【题目】已知抛物线
的焦点为
,
轴上方的点
在抛物线上,且
,直线
与抛物线交于
,
两点(点
,
与
不重合),设直线
,
的斜率分别为
,
.
(Ⅰ)求抛物线的方程;
(Ⅱ)当
时,求证:直线
恒过定点并求出该定点的坐标.
科目:高中数学 来源: 题型:
【题目】设圆
的圆心为
,直线
过点
且与
轴不重合,交圆
于
,
两点,过点
作
的平行线交
于点
.
(1)求
的值;
(2)设点
的轨迹为曲线
,直线
与曲线
相交于
,
两点,与直线
相交于
点,试问在椭圆
上是否存在一定点
,使得
,
,
成等差数列(其中
,
,
分别指直线
,
,
的斜率).若存在,求出
点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:
)
![]()
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)试讨论函数
的极值点的个数;
(2)若
,且
恒成立,求a的最大值.
参考数据:
| 1.6 | 1.7 | 1.74 | 1.8 | 10 |
| 4.953 | 5.474 | 5.697 | 6.050 | 22026 |
| 0.470 | 0.531 | 0.554 | 0.588 | 2.303 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,椭圆
的参数方程为
(
为参数),以原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求经过椭圆
右焦点
且与直线
垂直的直线的极坐标方程;
(2)若
为椭圆
上任意-点,当点
到直线
距离最小时,求点
的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为F,直线l与抛物线C交于A,B两点,O是坐标原点.
(1)若直线l过点F且
,求直线l的方程;
(2)已知点
,若直线l不与坐标轴垂直,且
,证明:直线l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状发热咳嗽气促和呼吸困难等.在较严重病例中,感染可导致肺炎严重急性呼吸综合征肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有
份血液样本,有以下两种检验方式:
方式一:逐份检验,则需要检验n次.
方式二:混合检验,将其中
且k≥2)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1.
假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p(0<p<1).现取其中
且k≥2)份血液样本,记采用逐份检验,方式,样本需要检验的总次数为
,采用混合检验方式,样本需要检验的总次数为
.
(1)若
,试求p关于k的函数关系式p=f(k).
(2)若p与干扰素计量
相关,其中
2)是不同的正实数,满足x1=1且
.
(i)求证:数列
为等比数列;
(ii)当
时采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了让健身馆会员参与的健身促销活动.
(1)为了解会员对促销活动的兴趣程度,现从某周六参加该健身馆健身活动的会员中随机采访男性会员和女性会员各
人,他们对于此次健身馆健身促销活动感兴趣的程度如下表所示:
感兴趣 | 无所谓 | 合计 | |
男性 |
|
|
|
女性 |
|
|
|
合计 |
|
|
|
根据以上数据能否有
的把握认为“对健身促销活动感兴趣”与“性别”有关?
(参考公式
,其中
)
|
|
|
|
|
|
|
|
|
|
|
|
(2)在感兴趣的会员中随机抽取
人对此次健身促销活动的满意度进行调查,以茎叶图记录了他们对此次健身促销活动满意度的分数(满分
分),如图所示,若将此茎叶图中满意度分为“很满意”(分数不低于
分)、“满意”(分数不低于平均分且低于
分)、“基本满意”(分数低于平均分)三个级别.先从“满意”和“很满意”的会员中随机抽取两人参加回访馈赠活动,求这两人中至少有一人是“很满意”会员的概率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,四边形
,
均为正方形,且
,M为
的中点,N为
的中点.
![]()
(1)求证:
平面ABC;
(2)求二面角
的正弦值;
(3)设P是棱
上一点,若直线PM与平面
所成角的正弦值为
,求
的值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com