精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3ax2+2bx+b-a(a,b是不同时为零的常数).
(1)当a=
1
3
时,若不等式f(x)>-
1
3
对任意x∈R恒成立,求实数b的取值范围;
(2)求证:函数y=f(x)在(-1,0)内至少存在一个零点.
分析:(1)把a=
1
3
代入,问题可化为x2+2bx+b>0对任意x∈R恒成立,可得△=(2b)2-4b<0,解之即可;
(2)易证当a=0,b≠0时,符合题意;当a≠0时,二次函数f(x)=3ax2+2bx+b-a的对称轴方程为x=-
b
3a
,分①-
b
3a
≤-
1
2
,②-
b
3a
>-
1
2
借助于零点的存在性定理来证明即可.
解答:解:(1)当a=
1
3
时,f(x)=x2+2bx+b-
1
3

问题可化为x2+2bx+b>0对任意x∈R恒成立,
故可得△=(2b)2-4b<0,解得0<b<1
(2)证:当a=0,b≠0时,f(x)=2bx+b的零点为-
1
2
∈(-1,0),
当a≠0时,二次函数f(x)=3ax2+2bx+b-a的对称轴方程为x=-
b
3a

①若-
b
3a
≤-
1
2
,即
b
a
3
2
时,f(-
1
2
)f(0)=(-
1
4
a
)(b-a)=(-
1
4
a2
)(
b
a
-1)<0,
所以函数y=f(x)在(-1,0)内至少存在一个零点,
②-
b
3a
>-
1
2
,即
b
a
3
2
时,f(-1)f(-
1
2
)=(2a-b)(-
1
4
a
)=(-
1
4
a2
)(2-
b
a
)<0
所以函数y=f(x)在(-1,0)内至少存在一个零点,
综上可得:函数y=f(x)在(-1,0)内至少存在一个零点.
点评:本题考查函数零点的判断,涉及分类讨论的数学,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案