精英家教网 > 高中数学 > 题目详情
已知函数f(x)=alnx-2ax+3(a≠0).
(I)设a=-1,求函数f(x)的极值;
(II)在(I)的条件下,若函数g(x)=
13
x3+x2f′(x)+m]
(其中f'(x)为f(x)的导数)在区间(1,3)上不是单调函数,求实数m的取值范围.
分析:(I)先求函数的导函数f′(x),再解不等式f′(x)>0,得函数的单调增区间,解不等式f′(x)<0得函数的单调减区间,最后由极值定义求得函数极值
(II)构造新函数g(x),把在区间(1,3)上不是单调函数,即函数g(x)的导函数在区间(1,3)不能恒为正或恒为负,从而转化为求导函数的函数值问题,利用导数列出不等式,最后解不等式求得实数m的取值范围
解答:解:(Ⅰ)当a=-1,f(x)=-lnx+2x+3(x>0),f(x)=
-1
x
+2
,…(2分)
∴f(x)的单调递减区间为(0,
1
2
),单调递增区间为(
1
2
,+∞)    …(4分),
∴f(x)的极小值是f(
1
2
)=-ln
1
2
+2×
1
2
+3=ln2+4
.…(6分)
(Ⅱ)g(x)=
1
3
x3+x2(-
1
x
+2+m)
,g′(x)=x2+(4+2m)x-1,…(8分)
∴g(x)在区间(1,3)上不是单调函数,
且g′(0)=-1,
g′(1)<0
g′(3)>0
 …(10分)
4+2m<0
20+6m>0
 即:-
10
3
<m<-2

故m的取值范围(-
10
3
,-2)
…(12分)
点评:本题考查了函数的定义域、单调性、极值,以及导数在其中的应用,由不等式恒成立问题与最值问题求解参数的取值范围的方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案