【题目】已知直线
,
,过点
的直线
分别与直线
,
交于
,其中点
在第三象限,点
在第二象限,点
;
(1)若
的面积为
,求直线
的方程;
(2)直线
交于
点
,直线
交
于点
,若
直线的斜率均存在,分别设为
,判断
是否为定值?若为定值,求出该定值;若不为定值,说明理由.
科目:高中数学 来源: 题型:
【题目】设圆
的圆心为
,直线
过点
且与
轴不重合,直线
交圆
于
,
两点,过点
作
的平行线交
于点
.
(1)证明
为定值,并写出点
的轨迹方程;
(2)设点
的轨迹为曲线
,直线
交
于
,
两点,过点
且与直线
垂直的直线与圆
交于
,
两点,求四边形
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在坐标原点,焦点在坐标轴上,且经过
、
、
三点.
(1)求椭圆
的方程;
(2)若直线
:
(
)与椭圆
交于
、
两点,证明直线
与直线
的交点在直线
上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
,其中
为参数,在以坐标原点
为极点,
轴的正半轴为极轴的极坐标系中,点
的极坐标为
,直线
的极坐标方程为
.
(1)求直线
的直角坐标方程与曲线
的普通方程;
(2)若
是曲线
上的动点,
为线段
的中点.求点
到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,圆C:x2+y2+4x-2y+m=0与直线
相切.
(1)求圆C的方程;
(2)若圆C上有两点M,N关于直线x+2y=0对称,且
,求直线MN的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A、B,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:
产品A(件) | 产品B(件) | ||
研制成本与塔载 | 20 | 30 | 计划最大资 |
产品重量(千克/件) | 10 | 5 | 最大搭载 |
预计收益(万元/件) | 80 | 60 |
试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com