【题目】如图,某公园摩天轮的半径为
,圆心距地面的高度为
,摩天轮做匀速转动,每
转一圈,摩天轮上的点
的起始位置在最低点处.
(1)已知在时刻
时
距离地面的高度
,(其中
),求
时
距离地面的高度;
(2)当离地面
以上时,可以看到公园的全貌,求转一圈中有多少时间可以看到公园的全貌?
![]()
科目:高中数学 来源: 题型:
【题目】设某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为
层,则每平方米的平均建筑费用为
(单位:元).
(1)写出楼房每平方米的平均综合费用
关于建造层数
的函数关系式;
(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点。那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设动点
是圆
上任意一点,过
作
轴的垂线,垂足为
,若点
在线段
上,且满足
.
(1)求点
的轨迹
的方程;
(2)设直线
与
交于
,
两点,点
坐标为
,若直线
,
的斜率之和为定值3,求证:直线
必经过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产甲乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元。该企业在一个生产周期消耗A原料不超过13吨,B原料不超过18吨。问该企业如何安排可获得最大利润,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出如下结论:
①函数
是奇函数;
②存在实数
,使得
;
③若
是第一象限角且
,则
;
④
是函数
的一条对称轴方程;
⑤函数
的图形关于点
成中心对称图形.
其中正确的结论的序号是__________.(填序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线顶点在原点,焦点在
轴上,又知此抛物线上一点
到焦点的距离为6.
(1)求此抛物线的方程;
(2)若此抛物线方程与直线
相交于不同的两点
、
,且
中点横坐标为2,求
的值.
【答案】(1)
;(2)2.
【解析】试题分析:
(1)由题意设抛物线方程为
,则准线方程为
,解得
,即可求解抛物线的方程;
(2)由
消去
得
,根据
,解得
且
,得到
,即可求解
的值.
试题解析:
(1)由题意设抛物线方程为
(
),其准线方程为
,
∵
到焦点的距离等于
到其准线的距离,∴
,∴
,
∴此抛物线的方程为
.
(2)由
消去
得
,
∵直线
与抛物线相交于不同两点
、
,则有![]()
解得
且
,
由
,解得
或
(舍去).
∴所求
的值为2.
【题型】解答题
【结束】
20
【题目】如图,在四棱锥
中,底面
是平行四边形,
,侧面
底面
,
,
,
,
分别为
,
的中点,点
在线段
上.
![]()
(1)求证:
平面
;
(2)如果三棱锥
的体积为
,求点
到面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=aln(x2+1)+bx存在两个极值点x1 , x2 .
(1)求证:|x1+x2|>2;
(2)若实数λ满足等式f(x1)+f(x2)+a+λb=0,试求λ的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com