【题目】关于直线m、n及平面
、
,下列命题中正确的个数是( )
①若
,则
②若
,则![]()
③若
,则
④若
,则![]()
A.0B.1C.2D.3
【答案】B
【解析】
①:根据线面的位置关系和线线关系进行判断即可;
②:根据线面平行的性质进行判断即可;
③:根据线面平行的性质定理、面面垂直的判定定理进行判断即可;
④:根据面面垂直的性质定理进行判断即可.
①:因为
,所以直线m与平面
没有交点,而
,所以直线m与直线n没有交点,故两直线的位置关系是平行或异面,故本命题不正确;
②:因为
,所以直线m、n和平面
没有交点,故两条直线可以相交、平行、异面,故本命题不正确;
③:因为
,所以存在一个过直线m的平面
与
相交,设交线为
,因此有
,又因为
,所以
,由面面垂直的判定定理可得,
,故本命题正确;
④:因为
,所以只有当m与
的交线垂直时,才能得到
,故本命题不正确,因此只有一个命题正确.
故选:B
科目:高中数学 来源: 题型:
【题目】某销售公司在当地
、
两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了
、
两家超市往年同期各50天的该食品销售记录,得到如下数据:
销售件数 | 8 | 9 | 10 | 11 |
频数 | 20 | 40 | 20 | 20 |
以这些数据的频数代替两家超市的食品销售件数的概率,记
表示这两家超市每日共销售食品件数,
表示销售公司每日共需购进食品的件数.
(1)求
的分布列;
(2)以销售食品利润的期望为决策依据,在
与
之中选其一,应选哪个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于曲线
,若存在非负实常数
和
,使得曲线
上任意一点
有
成立(其中
为坐标原点),则称曲线
为既有外界又有内界的曲线,简称“有界曲线”,并将最小的外界
成为曲线
的外确界,最大的内界
成为曲线
的内确界.
(1)曲线
与曲线
是否为“有界曲线”?若是,求出其外确界与内确界;若不是,请说明理由;
(2)已知曲线
上任意一点
到定点
,
的距离之积为常数
,求曲线
的外确界与内确界.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量
与尺寸x(mm)之间近似满足关系式
(b、c为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间
内时为优等品.现随机抽取6件合格产品,测得数据如下:
尺寸x(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
质量y (g) | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
质量与尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(Ⅰ)现从抽取的6件合格产品中再任选3件,记
为取到优等品的件数,试求随机变量
的分布列和期望;
(Ⅱ)根据测得数据作了初步处理,得相关统计量的值如下表:
|
|
|
|
75.3 | 24.6 | 18.3 | 101.4 |
(ⅰ)根据所给统计量,求y关于x的回归方程;
(ⅱ)已知优等品的收益
(单位:千元)与
的关系为
,则当优等品的尺寸x为何值时,收益
的预报值最大?(精确到0.1)
附:对于样本
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于圆周率,数学发展史上出现过多很有创意的求法,如著名的蒲丰试验,受其启发,我们也可以通过设计下面的试验来估计
的值,试验步骤如下:①先请高二年级
名同学每人在小卡片上随机写下一个实数对
;②若卡片上的
,
能与
构成锐角三角形,则将此卡片上交;③统计上交的卡片数,记为
;④根据统计数
,
估计
的值.那么可以估计
的值约为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
,离心率
,
是椭圆的左顶点,
是椭圆的左焦点,
,直线
:
.
(1)求椭圆
方程;
(2)直线
过点
与椭圆
交于
、
两点,直线
、
分别与直线
交于
、
两点,试问:以
为直径的圆是否过定点,如果是,请求出定点坐标;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:
,且an+1
(n=1,2…)集合M={an|
}中的最小元素记为m.
(1)若a1=20,写出m和a10的值:
(2)若m为偶数,证明:集合M的所有元素都是偶数;
(3)证明:当且仅当
时,集合M是有限集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com