【题目】如图,已知过点
的椭圆
的离心率为
,左顶点和上顶点分别为A,B.
![]()
(1)求椭圆的标准方程;
(2)若P为线段OD延长线上一点,直线PA交椭圆于另一点E,直线PB交椭圆于另一点Q.
①求直线PA与PB的斜率之积;
②判断直线AB与EQ是否平行?并说明理由.
【答案】(1)
1.(2) ①
.②平行.理由见解析
【解析】
(1)离心率值转化为
关系,再把点
坐标代入方程,即可求出椭圆标准方程;
(2)①求出
方程,设出
点坐标,可求出直线PA与PB的斜率之积;
②求出直线
方程,分别与椭圆方程联立,求出
两点坐标,代入斜率公式,求出直线
的斜率,然后再判断与直线
是否平行.
(1)∵椭圆过点D(
,
),且离心率为![]()
![]()
∴
,
∴椭圆的方程为
1.
(2)①由(1)知A(﹣2,0),B(0,1),
直线OD方程为y
,
点P在直线OD上,设P(﹣2y0,y0),
kPAkPB
.
②设E(x1,y1),Q(x2,y2),
联立直线AP:y
与椭圆的方程得,
(2y02﹣2y0+1)x2+4y02x+8y0﹣4=0,
∴﹣2+x1
,
∴x1
,y1
,
联立直线BP:y
与椭圆的方程得,
,
∴x2
,y2
,
∴![]()
又因为kAB
,∴kAB=kEQ,
∴直线AB与EQ是平行.
科目:高中数学 来源: 题型:
【题目】某兴趣小组在科学馆的帕斯卡三角仪器前进行探究实验.如图所示,每次使一个实心小球从帕斯卡三角仪器的顶部入口落下,当它在依次碰到每层的菱形挡板时,会等可能地向左或者向右落下,在最底层的7个出口处各放置一个容器接住小球,该小组连续进行200次试验,并统计容器中的小球个数得到柱状图:
![]()
(Ⅰ)用该实验来估测小球落入4号容器的概率,若估测结果的误差小于
,则称该实验是成功的.试问:该兴趣小组进行的实验是否成功?(误差
)
(Ⅱ)再取3个小球进行试验,设其中落入4号容器的小球个数为
,求
的分布列与数学期望.(计算时采用概率的理论值)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了节约用水,市民用水拟实行阶梯水价.每人月用水量中不超过
立方米的部分按4元/立方米收费,超出
立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:
![]()
(1)如果
为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,
至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替.当
=3时,试完成该10000位居民该月水费的频率分布表,并估计该市居民该月的人均水费.
组号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
分组 |
|
|
|
|
|
|
|
|
频率 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
的右顶点为A,抛物线的焦点与点A重合.
(1)求抛物线的标准方程;
(2)若直线l过点A且斜率为双曲线的离心率,求直线l被抛物线截得的弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,GH是东西方向的公路北侧的边缘线,某公司准备在GH上的一点B的正北方向的A处建设一仓库,设
,并在公路北侧建造边长为
的正方形无顶中转站CDEF(其中EF在GH上),现从仓库A向GH和中转站分别修两条道路AB,AC,已知AB=AC+1,且
.
(1)求
关于
的函数解析式,并求出定义域;
(2)如果中转站四堵围墙造价为10万元/km,两条道路造价为30万元/km,问:
取何值时,该公司建设中转站围墙和两条道路总造价M最低.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某老师是省级课题组的成员,主要研究课堂教学目标达成度,为方便研究,从实验班中随机抽取30次的随堂测试成绩进行数据分析
已知学生甲的30次随堂测试成绩如下
满分为100分
:
![]()
把学生甲的成绩按
,
,
,
,
,
分成6组,列出频率分布表,并画出频率分布直方图;
规定随堂测试成绩80分以上
含80分
为优秀,为帮助学生甲提高成绩,选取学生乙,对甲与乙的随堂测试成绩进行对比分析,甲与乙测试成绩是否为优秀相互独立
已知甲成绩优秀的概率为
以频率估计概率
,乙成绩优秀的概率为
,若
,则此二人适合为学习上互帮互助的“对子”
在一次随堂测试中,记
为两人中获得优秀的人数,已知
,问二人是否适合结为“对子”?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某化工企业2018年年底投入100万元,购入一套污水处理设备。该设备每年的运转费用是0.5万元,此外,每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元。设该企业使用该设备
年的年平均污水处理费用为
(单位:万元)
(1)用
表示
;
(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备。则该企业几年后需要重新更换新的污水处理设备。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
:
,过坐标原点
的直线
交
于
,
两点,点
在第一象限,
轴,垂足为
.连结
并延长交
于点
.
(1)设
到直线
的距离为
,求
的取值范围;
(2)求
面积的最大值及此时直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com