精英家教网 > 高中数学 > 题目详情
(1)在极坐标系中,曲线C1的方程为ρ=2cosθ,曲线C2的方程为ρcosθ=2,则C1与C2的交点个数为
1
1

(2)对于实数x,y,若|x-1|≤1,|y-1|≤1,则使得|x-2y+1|-m-1≤0恒成立的实数m的最小值为
2
2
分析:(1)已知曲线C1,C2的极坐标方程,可将圆C和直线C2先化为一般方程坐标,然后再计算曲线C1与C2交点的个数.
(2)首先分析题目已知不等式|x-2y+1|-m-1≤0恒成立的实数m的最小值,故可以考虑设y=|x-2y+1|,然后利用线性规划的方法,求解出函数y=|x-2y+1|,的最大值,然后把m+1大于等于最小值,即可满足条件.
解答:解:(1)∵曲线C1,C2的极坐标方程分别为ρ=2cosθ,ρcosθ=2,
又x=ρcosθ,y=ρsinθ,分别代入消去ρ和θ,可得,
x2+y2=2x,和x=2
∴把x=2代入x2+y2=2x得,
y=0,
∴曲线C1与C2交点的个数为1个.
(2)设y=|x-2y+1|,画出|x-1|≤1,|y-1|≤1,表示的区域,得正方形的四个顶点O(0,0),A(2,0),B(2,2),C(0,2)
当x=2,y=0时,x-2y+1=3,
当x=0,y=2时,x-2y+1=-3,
故y=|x-2y+1|∈[0,3],其有最大值3.
不等式|x-2y+1|-m-1≤0恒成立,即|x-2y+1|≤m+1,
也即m+1必大于等于y=|x-2y+1|的最大值3.即m+1≥3,m≥2
故实数m的最小值为:2.
故答案为:1;2.
点评:(1)此小题考查极坐标方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.
(2)此题主要考查绝对值不等式恒成立的解法问题,其中涉及到数形结合的思想,属于基础性题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下面四个命题:
①已知函数f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一组数据18,21,19,a,22的平均数是20,那么这组数据的方差是2;
③已知奇函数f(x)在(0,+∞)为增函数,且f(-1)=0,则不等式f(x)<0的解集{x|x<-1};
④在极坐标系中,圆ρ=-4cosθ的圆心的直角坐标是(-2,0).
其中正确的是
②,④
②,④

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列两题中任选一题作答,如果多做则按所做的第一题评分)
(1)在极坐标系中,若过点(1,0)且与极轴垂直的直线交曲线ρ=4cosθ于A、B两点,则|AB|=
2
3
2
3

(2)已知方程|2x-1|-|2x+1|=a+1有实数解,则a的取值范围为
[-3,-1)
[-3,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)
(1)在极坐标系中,设圆ρ=4上的点到直线ρ(cosθ+
3
sinθ)=6
的距离为d,求d的最大值;
(2)θ取一切实数时,连接A(4sinθ,6cosθ)和B(-4cosθ,6sinθ)两点的线段的中点为M,求点M的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)(1)在极坐标系中,点P的极坐标为(
2
π
4
),点Q是曲线C上的动点,曲线C的极坐标方程为ρ(cosθ-sinθ)+1=0,则P、Q两点之间的距离的最小值为
2
2
2
2

(2)已知PA是圆O的切线,切点为A,PA=2,AC是圆O的直径,PC与圆O交于点B,PB=l,则圆D的半径R=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题(请考生在两个小题中任选一题作答,如果多做,则按所做的第一题评阅记分).
(1)在极坐标系中,过圆ρ=6cosθ的圆心,且垂直于极轴的直线的极坐标方程为
 

(2)若对于任意角θ,都有
cosθ
a
+
sinθ
b
=1
,则下列不等式中恒成立的是
 

A.a2+b2≤1B.a2+b2≥1C.
1
a2
+
1
b2
≤1
D.
1
a2
+
1
b2
≥1

查看答案和解析>>

同步练习册答案