精英家教网 > 高中数学 > 题目详情

设直线轴的交点为P,点P把圆的直径分为两段,则其长度之比为

A.                               B.        

C.                               D.

 

【答案】

A

【解析】

试题分析:依题意可求得P(0,-)。(x+1)2+y2=25圆心O(-1,0),∴|OP|=2

∵半径=5,∴则其长度之比,故选A。

考点:本题主要考查直线与圆的位置关系。

点评:研究直线与圆的位置关系,可根据条件灵活选用“代数法”或“几何法”。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

抛物线方程为y2=p(x+1)(p>0),直线x+y=m与x轴的交点在抛物线的准线的右边.
(1)求证:直线与抛物线总有两个交点;
(2)设直线与抛物线的交点为Q、R,OQ⊥OR,求p关于m的函数f(m)的表达式;
(3)在(2)的条件下,若m变化,使得原点O到直线QR的距离不大于
2
2
,求p的值的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线方程为y2=p(x+1)(p>0),直线x+y=m与x轴的交点在抛物线的准线的右边.
(1)求证:直线与抛物线总有两个交点;
(2)设直线与抛物线的交点为Q、R,OQ⊥OR,
求p关于m的函数f(m)的表达式;
(3)在(2)的条件下,若抛物线焦点F到直线x+y=m的距离为
2
2

求此直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线方程为y2=p(x+1)(p>0),直线x+y=m与x轴的交点在抛物线的准线的右边.
(1)求证:直线与抛物线总有两个交点;
(2)设直线与抛物线的交点为Q、R,OQ⊥OR,求p关于m的函数f(m)的表达式;
(3)在(2)的条件下,若m变化,使得原点O到直线QR的距离不大于
2
2
,求p的值的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线方程为y2=p(x+1)(p>0),直线x+y=m与x轴的交点在抛物线的准线的右边.
(1)求证:直线与抛物线总有两个交点;
(2)设直线与抛物线的交点为Q、R,OQ⊥OR,
求p关于m的函数f(m)的表达式;
(3)在(2)的条件下,若抛物线焦点F到直线x+y=m的距离为
2
2

求此直线的方程.

查看答案和解析>>

同步练习册答案