【题目】已知
为坐标原点,
是椭圆
上的点,设动点
满足
.
(1)求动点
的轨迹
的方程;
(2)若直线
与曲线
相交于
,
两个不同点,求
面积的最大值.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)设点
,,则由
,得
,利用“逆代法”可得动点
的轨迹
的方程;(2)直线
与曲线
,联立可得
,,根据韦达定理,弦长公式、点到直线距离公式将
面积用
表示,利用基本不等式 即可得结.
试题解析:(1)设点
,
,则由
,得
,即
,
,因为点
在椭圆
,所以
,故
,即动点
的轨迹
的方程为
.
(2)由曲线
与直线
联立得
,消
得
,因为直线
与曲线
交于
,
两点,所以
,又
,所以
.
设
,
,则
,
,因为点
到直线
:
的距离
,![]()
![]()
,所以
,
,当且仅当
,即
时取等号,所以
面积的最大值为
.
【方法点晴】本题主要考查逆代法求曲线方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最大值的.
科目:高中数学 来源: 题型:
【题目】已知定义域为R的函数f(x)在(2,+∞)为增函数,且函数y=f(x+2)为偶函数,则下列结论不成立的是( )
A.f(0)>f(1)
B.f(0)>f(2)
C.f(1)>f(3)
D.f(1)>f(2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
.
(1)判断函数f(x)在区间[1,+∞)上的单调性,并用定义证明你的结论;
(2)求函数f(x)在区间[2,4]上的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=ax+b的图象大致为( ) ![]()
A.![]()
B.
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知坐标平面上点
与两个定点
,
的距离之比等于5.
(1)求点
的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为
,过点
的直线
被
所截得的线段的长为 8,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)满足f(x+1)﹣f(x)=2x(x∈R),且f(0)=1,
(1)求f(x)的解析式;
(2)当x∈[﹣1,1]时,求函数g(x)=f(x)﹣2x的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com