精英家教网 > 高中数学 > 题目详情
已知幂函数f(x)=(m2-3m+3)xm2-m-2的图象不经过原点,则m=(  )
分析:利用幂函数的概念可得m2-3m+3=1,可解得m,结合函数图象不经过原点,即可得答案.
解答:解:∵f(x)=(m2-3m+3)xm2-m-2为幂函数,且函数图象不经过原点,
∴m2-3m+3=1,
∴m=1或m=2.
当m=1时,f(x)=x-2,其图象不经过原点,符合题意;
当m=2时,f(x)=x0,其图象不经过原点,也符合题意;
故选C.
点评:本题考查幂函数的概念与幂函数的性质,考查解方程的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知幂函数f(x)=x-m2+2m+3(m∈Z)为偶函数且在区间(0,+∞)上是单调增函数.
(1)求函数f(x)的解析式;
(2)设函数g(x)=2
f(x)
-qx+q-1
,若g(x)>0对任意x∈[-1,1]恒成立,求实数q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

.已知幂函数f(x)=xk2-2k-3(k∈N*)的图象关于y轴对称,且在区间(0,+∞)上是减函数,
(1)求函数f(x)的解析式;
(2)若a>k,比较(lna)0.7与(lna)0.6的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=(m2-m-1)xm2-2m-1,满足f(-x)=f(x),则m=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=xm2-2m-3(m∈Z)的图象与x轴、y轴无公共点且关于y轴对称.
(1)求m的值;
(2)画出函数y=f(x)的图象(图象上要反映出描点的“痕迹”).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=x
3
2
+k-
1
2
k2
(k∈Z)

(1)若f(x)为偶函数,且在(0,+∞)上是增函数,求f(x)的解析式;
(2)若f(x)在(0,+∞)上是减函数,求k的取值范围.

查看答案和解析>>

同步练习册答案