精英家教网 > 高中数学 > 题目详情
已知数列,…,,…,Sn为该数列的前n项和,
(1)计算S1,S2,S3,S4
(2)根据计算结果,猜想Sn的表达式,并用数学归纳法进行证明.
【答案】分析:(1)按照数列和的定义计算即可
(2)按照数学归纳法的证明步骤进行证明.
解答:解:(1)S1==
S2==
S3=S2+=
S4=S3+=
推测Sn=(n∈N*).用数学归纳法证明如下:…(5分)
(1)当n=1时,S1==,等式成立
(2)假设当n=k时,等式成立,
即Sk=,那么当n=k+1时,
Sk+1=Sk+
=+
=
=
=
=
也就是说,当n=k+1时,等式成立.
根据(1)和(2),可知对一切n∈N*,等式均成立…(10分)
点评:本题主要考查数学归纳法的应用,用归纳法证明数学命题时的基本步骤:(1)检验n=1成立(2)假设n=k时成立,由n=k成立推导n=k+1成立,要注意由归纳假设到检验n=k+1的递推.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列an是首项为1的等比数列,Sn是an的前n项和,且S6=9S3,则数列an的通项公式是(  )
A、2n-1B、21-nC、31-nD、3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an的前n项和为Sn,a1=2,nan+1=Sn+n(n+1),
(1)求数列an的通项公式;
(2)设bn=
Sn2n
,如果对一切正整数n都有bn≤t,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an满足a1=1,an+1=an+n(n∈N*),数列bn满足b1=1,(n+2)bn+1=nbn(n∈N*),数列cn满足c1=1,
c1
1
+
c2
22
+…+
cn
n2
=
cn+1
n+1
(n∈N*
(1)求数列{an}、{bn}的通项公式;
(2)求数列cn的通项公式;
(3)是否存在正整数k使得k(an+
7
2
)-
3
bn+1
cn+6n+15
对一切n∈N*恒成立,若存在求k的最小值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,Tn=
S1+S2+…+Sn
n
,称Tn为数列a1,a2,…an的“理想数”,已知数列a1,a2,…a500的“理想数”为2004,那么数列2,a1,a2,…a500的“理想数”为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列
2
6
10
14
、3
2
…那么7
2
是这个数列的第几项(  )
A、23B、24C、19D、25

查看答案和解析>>

同步练习册答案