已知函数
.
(I)求
的单调区间;
(II)设
,若
在
上单调递增,求
的取值范围.
科目:高中数学 来源: 题型:解答题
已知函数f(x)=alnx+
(a≠0)在(0,
)内有极值.
(I)求实数a的取值范围;
(II)若x1∈(0,
),x2∈(2,+∞)且a∈[
,2]时,求证:f(x2)﹣f(x1)≥ln2+
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数![]()
(1)当
时,求函数
的单调区间;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.
,试问函数
在
上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
,函数
.
(1)当
时,写出函数
的单调递增区间;
(2)当
时,求函数
在区间[1,2]上的最小值;
(3)设
,函数
在(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围(用a表示).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
。
(Ⅰ)若
,求函数
的单调区间并比较
与
的大小关系
(Ⅱ)若函数
的图象在点
处的切线的倾斜角为
,对于任意的
,函数
在区间
上总不是单调函数,求
的取值范围;
(Ⅲ)求证:
。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com