【题目】阳马和鳖臑(bienao)是《九章算术·商功》里对两种锥体的称谓.如图所示,取一个长方体,按下图斜割一分为二,得两个模一样的三棱柱,称为堑堵(如图).再沿其中一个堑堵的一个顶点与相对的棱剖开,得四棱锥和三棱锥各一个,有一棱与底面垂直的四棱锥称为阳马(四棱锥
)余下三棱锥称为鳖臑(三棱锥
)若将某长方体沿上述切割方法得到一个阳马一个鳖臑,且该阳马的正视图和鳖臑的侧视图如图所示,则可求出该阳马和鳖臑的表面积之和为( )
![]()
A.
B.![]()
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】已知椭圆
与抛物线
有共同的焦点
,且两曲线的公共点到
的距离是它到直线
(点
在此直线右侧)的距离的一半.
(1)求椭圆
的方程;
(2)设
为坐标原点,直线
过点
且与椭圆交于
两点,以
为邻边作平行四边形
.是否存在直线
,使点
落在椭圆
或抛物线
上?若存在,求出点
坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:
的焦点为F,Q是抛物线上的一点,
.
(Ⅰ)求抛物线C的方程;
(Ⅱ)过点
作直线l与抛物线C交于M,N两点,在x轴上是否存在一点A,使得x轴平分
?若存在,求出点A的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,以
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,直线
与曲线
相交于
两点,与
轴相交于点
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,已知PA⊥平面ABCD,△ABC为等边三角形,PA=2AB=2,AC⊥CD,PD与平面PAC所成角的余弦值为
.
![]()
(1)证明:
平面PAD;
(2)点M为PB上一点,且
,试判断点M的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阳马和鳖臑(bienao)是《九章算术·商功》里对两种锥体的称谓.如图所示,取一个长方体,按下图斜割一分为二,得两个模一样的三棱柱,称为堑堵(如图).再沿其中一个堑堵的一个顶点与相对的棱剖开,得四棱锥和三棱锥各一个,有一棱与底面垂直的四棱锥称为阳马(四棱锥
)余下三棱锥称为鳖臑(三棱锥
)若将某长方体沿上述切割方法得到一个阳马一个鳖臑,且该阳马的正视图和鳖臑的侧视图如图所示,则可求出该阳马和鳖臑的表面积之和为( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某连锁餐厅新店开业,打算举办一次食品交易会,招待新老顾客试吃.项目经理通过查阅最近
次食品交易会参会人数
(万人)与餐厅所用原材料数量
(袋),得到如下统计表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
参会人数(万人) |
|
|
|
|
|
原材料(袋) |
|
|
|
|
|
(1)根据所给
组数据,求出
关于
的线性回归方程
;
(2)已知购买原材料的费用
(元)与数量
(袋)的关系为
,投入使用的每袋原材料相应的销售收入为
元,多余的原材料只能无偿返还,据悉本次交易大会大约有
万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润
销售收入
原材料费用).
参考公式:
,
.
参考数据:
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有限个元素组成的集合
,
,记集合
中的元素个数为
,即
.定义
,集合
中的元素个数记为
,当
时,称集合
具有性质
.
(1)
,
,判断集合
,
是否具有性质
,并说明理由;
(2)设集合
,
且
(
),若集合
具有性质
,求
的最大值;
(3)设集合
,其中数列
为等比数列,
(
)且公比为有理数,判断集合
是否具有性质
并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,要利用一半径为
的圆形纸片制作三棱锥形包装盒.已知该纸片的圆心为
,先以
为中心作边长为
(单位:
)的等边三角形
,再分别在圆
上取三个点
,
,
,使
,
,
分别是以
,
,
为底边的等腰三角形.沿虚线剪开后,分别以
,
,
为折痕折起
,
,
,使得
,
,
重合于点
,即可得到正三棱锥
.
![]()
(1)若三棱锥
是正四面体,求
的值;
(2)求三棱锥
的体积
的最大值,并指出相应
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com