精英家教网 > 高中数学 > 题目详情
给出下列五个命题:
①若f′(x0)=0,则函数y=f(x)在x=x0处取得极值;
②若m≥-1,则函数f(x)=log
1
2
(x2-2x-m)
的值域为R;
③“a=1”是“函数f(x)=
a-ex
1+aex
在定义域上是奇函数”的充分不必要条件.
④函数y=f(1+x)的图象与函数y=f(l-x)的图象关于y轴对称;
⑤“x1>1且x2>2”是“x1+x2>3且x1x2>2”的充要条件;
其中正确命题的个数是
②③
②③
分析:利用导数的概念,对数函数的性质,函数的对称性与充分条件的概念对四个选项逐一判断即可.
解答:解:对于①,若f(x)=x3,则f′(0)=0,而函数y=f(x)在x=0处取不能取得极值,故①错误;
对于②,若使f(x)=log
1
2
(x2-2x-m)
的值域为R,则△=4+4m≥0,
∴m≥-1,
故②正确;
对于③,若a=1,则f(-x)=
1-e-x
1+e-x
=
ex-1
1+ex
=-f(x),
∴f(x)在定义域上是奇函数;反之,若f(-x)=-f(x),即
a-e-x
1+ae-x
=-
a-ex
1+aex

整理得(a2-1)(e2x+1)=0,由于e2x+1>0,
∴a=±1,
∴“a=1”是“函数f(x)=
a-ex
1+aex
在定义域上是奇函数”的充分不必要条件,故③正确;
对于④,函数y=f(1+x)的图象与函数y=f(l-x)的图象关于y轴对称是错误的;
对于⑤,“x1>1且x2>2”是“x1+x2>3且x1x2>2”的充分条件而非充要条件;故⑤错误.
综上所述,②③正确.
故答案为:②③.
点评:本题考查命题的真假判断与应用,考查函数的基本性质及充分条件,考查综合分析与应用的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列五个命题:
①在三角形ABC中,若A>B则sinA>sinB;
②若数列{bn}的前n项和Sn=n2+2n+1.则数列{bn}从第二项起成等差数列;
③已知Sn是等差数列{an}的前n项和,若S7>S8则S9>S8
④已知等差数列{an}的前n项和为Sn,若a5=5a3
S9S5
=9;
⑤若{an}是等比数列,且Sn=3n+1+r,则r=-1;
其中正确命题的序号为:
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①若4a=3,log45=b,则log4
95
=a2-b

②函数f(x)=0.51+2x-x2的单调递减区间是[1,+∞);
③m≥-1,则函数y=lg(x2-2x-m)的值域为R;
④若映射f:A→B为单调函数,则对于任意b∈B,它至多有一个原象;
⑤函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称,则f(e3)=3.
其中正确的命题是
③④⑤
③④⑤
(把你认为正确的命题序号都填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:其中正确的命题有
②③⑤
②③⑤
(填序号).
①若
a
b
=0,则一定有
a
b
;  ②?x,y∈R,sin(x-y)=sinx-siny;
③?a∈(0,1)∪(1,+∞),函数f(x)=a1-2x+1都恒过定点(
1
2
,2)

④方程x2+y2+Dx+Ey+F=0表示圆的充要条件是D2+E2-4F≥0;
⑤若存在有序实数对(x,y),使得
OP
=x
OA
+y
OB
,则O,P,A,B四点共面.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上海模拟)已知f(x)在x∈[a,b]上的最大值为M,最小值为m,给出下列五个命题:
①若对任何x∈[a,b]都有p≤f(x),则p的取值范围是(-∞,m];
②若对任何x∈[a,b]都有p≤f(x),则p的取值范围是(-∞,M];
③若关于x的方程p=f(x)在区间[a,b]上有解,则p的取值范围是[m,M];
④若关于x的不等式p≤f(x)在区间[a,b]上有解,则p的取值范围是(-∞,m];
⑤若关于x的不等式p≤f(x)在区间[a,b]上有解,则p的取值范围是(-∞,M];
其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:其中正确的命题有
②③④
②③④
(填序号).
①函数y=sinx(x∈[-π,π])的图象与x轴围成的图形的面积S=
π
sinxdx

C
r+1
n+1
=
C
r+1
n
+
C
r
n

③在(a+b)n的展开式中,奇数项的二项式系数之和等于偶数项的二项式系数之和;
④i+i2+i3+…i2012=0;
⑤用数学归纳法证明不等式
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
13
24
,(n≥2,n∈N*)
的过程中,由假设n=k成立推到n=k+1成立时,只需证明
1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k
+
1
2k+1
+
1
2(k+1)
13
24
即可.

查看答案和解析>>

同步练习册答案