精英家教网 > 高中数学 > 题目详情
(2012•佛山一模)已知圆C1:(x-4)2+y2=1,圆C2:x2+(y-2)2=1,动点P到圆C1,C2上点的距离的最小值相等.
(1)求点P的轨迹方程;
(2)点P的轨迹上是否存在点Q,使得点Q到点A(-2
2
,0)的距离减去点Q到点B(2
2
,0
)的距离的差为4,如果存在求出Q点坐标,如果不存在说明理由.
分析:(1)利用动点P到圆C1,C2上点的距离的最小值相等,建立方程,化简可得点P的轨迹方程;       
(2)根据点Q到点A(-2
2
,0)的距离减去点Q到点B(2
2
,0
)的距离的差为4,可得Q的方程,与直线l:y=2x-3联立,利用判别式可得结论.
解答:解:(1)设动点P的坐标为(x,y),圆C1:(x-4)2+y2=1的圆心坐标为(4,0),圆C2:x2+(y-2)2=1的圆心坐标为(0,2)
∵动点P到圆C1,C2上点的距离的最小值相等
∴|PC1|=|PC2|
(x-4)2+y2
=
x2+(y-2)2

化简得:y=2x-3
因此点P的轨迹方程是y=2x-3;       
(2)假设这样的Q点存在,因为点Q到点A(-2
2
,0)的距离减去点Q到点B(2
2
,0
)的距离的差为4,
所以Q点在以A(-2
2
,0)和B(2
2
,0
)为焦点,实轴长为4的双曲线的右支上,
即Q点在曲线
x2
4
-
y2
4
=1(x≥2)
上,
∵Q点在直线l:y=2x-3上
∴代入曲线方程可得3x2-12x+13=0
∴△=122-4×3×13<0,方程组无解,
所以点P的轨迹上不存在满足条件的点Q.
点评:本题考查轨迹方程,考查直线与曲线的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•佛山一模)设n∈N*,圆Cn:x2+y2=
R
2
n
(Rn>0)与y轴正半轴的交点为M,与曲线y=
x
的交点为N(
1
n
yn
),直线MN与x轴的交点为A(an,0).
(1)用n表示Rn和an
(2)求证:an>an+1>2;
(3)设Sn=a1+a2+a3+…+an,Tn=1+
1
2
+
1
3
+…+
1
n
,求证:
7
5
Sn-2n
Tn
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山一模)某学校三个社团的人员分布如下表(每名同学只参加一个社团)
合唱社 粤曲社 书法社
高一 45 30 a
高二 15 10 20
学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从社团成员中抽取30人,结果合唱社被抽出12人,则这三个社团人数共有
150
150

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山一模)如图,三棱锥P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E为PC的中点,点F在PA上,且2PF=FA.
(1)求证:平面PAC平面BEF;
(2)求平面ABC与平面BEF所成的二面角的平面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山一模)下列函数中既是奇函数,又在区间(-1,1)上是增函数的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山一模)函数y=
3
sinx+sin(x+
π
2
)的最小正周期是

查看答案和解析>>

同步练习册答案