【题目】设l为曲线C:
在点
处的切线.
(1)求l的方程;
(2)证明:除切点
之外,曲线C在直线l的下方;
科目:高中数学 来源: 题型:
【题目】某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交
元的管理费,预计当每件商品的售价为
元时,一年的销售量为
万件.
(1)求该连锁分店一年的利润
(万元)与每件商品的售价
的函数关系式
;
(2)当每件商品的售价为多少元时,该连锁分店一年的利润
最大,并求出
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左焦点为
,右焦点为
,设M,N是椭圆C上位于x轴上方的两动点,且直线
与直线
平行,
与
交于点D.
(Ⅰ)求
和
的坐标;
(Ⅱ)求
的最小值;
(Ⅲ)求证:
是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线
的焦点为F,圆
,点
为抛物线上一动点.已知当
的面积为
.
![]()
(I)求抛物线方程;
(II)若
,过P做圆C的两条切线分别交y轴于M,N两点,求
面积的最小值,并求出此时P点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知如图,直线
是抛物线
(
)和圆C:
的公切线,切点(在第一象限)分别为P、Q.F为抛物线的焦点,切线
交抛物线的准线于A,且
.
![]()
(1)求切线
的方程;
(2)求抛物线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,圆
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求圆
的极坐标方程;
(2)已知射线
,若
与圆
交于点
(异于点
),
与直线
交于点
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题:
①若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;
②在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;
③设随机变量
服从正态分布
,若
,则
;
④对分类变量
与
的随机变量
的观测值
来说,
越小,判断“
与
有关系”的把握越大.其中正确的命题序号是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】足球是世界普及率最高的运动,我国大力发展校园足球.为了解本地区足球特色学校的发展状况,社会调查小组得到如下统计数据:
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色学校y(百个) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根据上表数据,计算y与x的相关系数r,并说明y与x的线性相关性强弱.
(已知:
,则认为y与x线性相关性很强;
,则认为y与x线性相关性一般;
,则认为y与x线性相关性较):
(2)求y关于x的线性回归方程,并预测A地区2020年足球特色学校的个数(精确到个).
参考公式和数据:
,
![]()
![]()
,
![]()
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取
个作为样本,称出它们的重量(单位:克)重量分组区间为
,
,
,
,由此得到样本的重量频率分布直方图(如图).
![]()
(1)求
的值,并根据样本数据,估计盒子中小球重量的众数与平均数(精确到0.01);
(2)从盒子中装的大量小球中,随机抽取3个小球,其中重量在
内的小球个数为
,求
的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com