【题目】已知向量
,
满足|
|=|
=1,且|k
+
|=
|
﹣k
|(k>0),令f(k)=
. (Ⅰ)求f(k)=
(用k表示);
(Ⅱ)若f(k)≥x2﹣2tx﹣
对任意k>0,任意t∈[﹣1,1]恒成立,求实数x的取值范围.
【答案】解:(Ⅰ)由题设得
,对
两边平方得:
;
∴
;
∴
;
∴
;
(Ⅱ)
,当且仅当k=1时取“=”;
∵f(k)≥x2﹣2tx﹣
对任意的k>0,t∈[﹣1,1]恒成立;
∴
≥x2﹣2tx﹣
;
即g(t)=2xt﹣x2+1≥0在[﹣1,1]上恒成立,而g(t)在[﹣1,1]上为单调函数或常函数;
;
解得1﹣
≤x≤
﹣1;
故实数x的取值范围为[1﹣
,
﹣1].
【解析】(Ⅰ)根据
,对
两边平方即可求出
的值,从而得出
;(Ⅱ)先根据基本不等式求出k=1时,f(k)取最小值
,这样根据条件即可得到
对任意的t∈[﹣1,1]恒成立,即得到g(t)=2xt﹣x2+1≥0对任意的t∈[﹣1,1]恒成立,从而得到
,这样即可解出x的取值范围.
科目:高中数学 来源: 题型:
【题目】已知命题p:点M(1,3)不在圆(x+m)2+(y﹣m)2=16的内部,命题q:“曲线
表示焦点在x轴上的椭圆”,命题s:“曲线
表示双曲线”.
(1)若“p且q”是真命题,求m的取值范围;
(2)若q是s的必要不充分条件,求t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”. (I) 已知二次函数f(x)=ax2+2bx﹣3a(a,b∈R),试判断f(x)是否为“局部奇函数”?并说明理由;
(II) 设f(x)=2x+m﹣1是定义在[﹣1,2]上的“局部奇函数”,求实数m的取值范围;
(III) 设f(x)=4x﹣m2x+1+m2﹣3,若f(x)不是定义域R上的“局部奇函数”,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)定义在区间(﹣1,1)内,对于任意的x,y∈(﹣1,1)有f(x)+f(y)=f(
),且当x<0时,f(x)>0.
(1)判断这样的函数是否具有奇偶性和单调性,并加以证明;
(2)若f(﹣
)=1,求方程f(x)+
=0的解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2﹣4x﹣14y+45=0及点Q(﹣2,3).
(1)若M为圆C上任一点,求|MQ|的最大值和最小值;
(2)若实数m,n满足m2+n2﹣4m﹣14n+45=0,求k=
的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a为实数,函数f(x)=ex﹣2x+2a,x∈R.
(1)求函数f(x)的极值;
(2)求证:当a>ln2﹣1且x>0时,ex>2x﹣2a.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com