精英家教网 > 高中数学 > 题目详情
已知函数,则函数f(x)在点(0,f(0))处的切线方程为( )
A.x-y+1=0
B.x+y-1=0
C.cos•x+y-1=0
D.
【答案】分析:先求出f′(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决.
解答:解:∵,∴f′(x)=-e-x(sinx+cosx),
∴f′(0)=-1,
∵f(0)=1,
∴函数f(x)的图象在点A(0,1)处的切线方程为y-1=-1×(x-0),
即x+y-1=0
故选B.
点评:本小题主要考查直线的斜率与导数的几何意义关系、利用导数求曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x),当x<0时,f(x)=x2+2x-1
(1)若f(x)为R上的奇函数,则函数在R上的解析式为?
(2)若f(x)为R上的偶函数,则函数在R上的解析式为?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象是连续不断的,有如下x,f(x)对应值表:
x -2 -1 0
f(x) -10 3 2
则函数f(x)在区间
(-2,-1)
(-2,-1)
有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x2-2mx+n|,x∈R,下列结论:
①函数f(x)是偶函数;
②若f(0)=f(2)时,则函数f(x)的图象必关于直线x=1对称;
③若m2-n≤0,则函数f(x)在区间(-∞,m]上是减函数;
④函数f(x)有最小值|n-m2|.其中正确的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-bx2的图象过点P(-1,2),且在点P处的切线恰与直线x-3y=0垂直.则函数f(x)的解析式为
f(x)=x3+3x2
f(x)=x3+3x2

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数数学公式,则函数f(x)的表达式为


  1. A.
    f(x)=x2+2x+1(x≥0)
  2. B.
    f(x)=x2+2x+1(x≥-1)
  3. C.
    f(x)=-x2-2x-1(x≥0)
  4. D.
    f(x)=-x2-2x-1(x≥-1)

查看答案和解析>>

同步练习册答案