精英家教网 > 高中数学 > 题目详情
数列an+1=|an-4|+2(n∈N*),如果{an}是一个等差数列,则a1=
 
分析:根据数列{an}是一个等差数列,设出等差数列的公差,由条件an+1=|an-4|+2(n∈N*),建立方程关系即可求出结论.
解答:解:若{an}是等差数列,设公差为 d,
∵an+1=|an-4|+2(n∈N*),
∴a1+nd=|a1+(n-1)d-4|+2,
化简得 nd+(a1-2)=|nd+(a1-2)+(-d-2)|,
上式对任意正整数 n 恒成立,因此
①若d=0,则 a1=3;
②如d<0,不可能,∵当 n 趋于无穷时,左边为负数;
③如d>0,则-d-2=0,
解得d=-2<0,矛盾,
∴当且仅当 a1=3 时,数列{an}是等差数列.
故答案为:3.
点评:本题主要考查等差数列的应用,根据条件建立方程是解决本题的关键,注意要对d进行讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、给定项数为m(m∈N*,m≥3)的数列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一个正整数k(2≤k≤m-1),若数列{an}中存在连续的k项和该数列中另一个连续的k项恰好按次序对应相等,则称数列{an}是“k阶可重复数列”,例如数列{an}:0,1,1,0,1,1,0.因为a1,a2,a3,a4与a4,a5,a6,a7按次序对应相等,所以数列{an}是“4阶可重复数列”.
(Ⅰ)分别判断下列数列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5阶可重复数列”?如果是,请写出重复的这5项;
(Ⅱ)若数为m的数列{an}一定是“3阶可重复数列”,则m的最小值是多少?说明理由;
(Ⅲ)假设数列{an}不是“5阶可重复数列”,若在其最后一项am后再添加一项0或1,均可使新数列是“5阶可重复数列”,且a4=1,求数列{an}的最后一项am的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

给定项数为m(m∈N*,m≥3)的数列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一个正整数k(2≤k≤m-1),若数列{an}中存在连续的k项和该数列中另一个连续的k项恰好按次序对应相等,则称数列{an}是“k阶可重复数列”,例如数列{an}:0,1,1,0,1,1,0.因为a1,a2,a3,a4与a4,a5,a6,a7按次序对应相等,所以数列{an}是“4阶可重复数列”.
(Ⅰ)分别判断下列数列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5阶可重复数列”?如果是,请写出重复的这5项;
(Ⅱ)若数为m的数列{an}一定是“3阶可重复数列”,则m的最小值是多少?说明理由;
(Ⅲ)假设数列{an}不是“5阶可重复数列”,若在其最后一项am后再添加一项0或1,均可使新数列是“5阶可重复数列”,且a4=1,求数列{an}的最后一项am的值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年北京市海淀区高三(上)期末数学试卷(理科)(解析版) 题型:解答题

给定项数为m(m∈N*,m≥3)的数列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一个正整数k(2≤k≤m-1),若数列{an}中存在连续的k项和该数列中另一个连续的k项恰好按次序对应相等,则称数列{an}是“k阶可重复数列”,例如数列{an}:0,1,1,0,1,1,0.因为a1,a2,a3,a4与a4,a5,a6,a7按次序对应相等,所以数列{an}是“4阶可重复数列”.
(Ⅰ)分别判断下列数列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5阶可重复数列”?如果是,请写出重复的这5项;
(Ⅱ)若数为m的数列{an}一定是“3阶可重复数列”,则m的最小值是多少?说明理由;
(Ⅲ)假设数列{an}不是“5阶可重复数列”,若在其最后一项am后再添加一项0或1,均可使新数列是“5阶可重复数列”,且a4=1,求数列{an}的最后一项am的值.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年高考模拟数学专题:压轴大题(解析版) 题型:解答题

给定项数为m(m∈N*,m≥3)的数列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一个正整数k(2≤k≤m-1),若数列{an}中存在连续的k项和该数列中另一个连续的k项恰好按次序对应相等,则称数列{an}是“k阶可重复数列”,例如数列{an}:0,1,1,0,1,1,0.因为a1,a2,a3,a4与a4,a5,a6,a7按次序对应相等,所以数列{an}是“4阶可重复数列”.
(Ⅰ)分别判断下列数列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5阶可重复数列”?如果是,请写出重复的这5项;
(Ⅱ)若数为m的数列{an}一定是“3阶可重复数列”,则m的最小值是多少?说明理由;
(Ⅲ)假设数列{an}不是“5阶可重复数列”,若在其最后一项am后再添加一项0或1,均可使新数列是“5阶可重复数列”,且a4=1,求数列{an}的最后一项am的值.

查看答案和解析>>

科目:高中数学 来源:2010年高考数学专项复习:创新题(2)(解析版) 题型:解答题

给定项数为m(m∈N*,m≥3)的数列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一个正整数k(2≤k≤m-1),若数列{an}中存在连续的k项和该数列中另一个连续的k项恰好按次序对应相等,则称数列{an}是“k阶可重复数列”,例如数列{an}:0,1,1,0,1,1,0.因为a1,a2,a3,a4与a4,a5,a6,a7按次序对应相等,所以数列{an}是“4阶可重复数列”.
(Ⅰ)分别判断下列数列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5阶可重复数列”?如果是,请写出重复的这5项;
(Ⅱ)若数为m的数列{an}一定是“3阶可重复数列”,则m的最小值是多少?说明理由;
(Ⅲ)假设数列{an}不是“5阶可重复数列”,若在其最后一项am后再添加一项0或1,均可使新数列是“5阶可重复数列”,且a4=1,求数列{an}的最后一项am的值.

查看答案和解析>>

同步练习册答案