(本小题满分14分)已知函数![]()
(I)求函数
在![]()
上的最小值;
(II)对一切
恒成立,求实数
的取值范围;
(III)求证:对一切
,都有![]()
(I)f ′(x)=lnx+1,当x∈(0,
),f ′(x)<0,f (x)单调递减,
当x∈(
,+∞),f ′(x)>0,f (x)单调递增. ……2分
①0<t<t+2<
,t无解;
②0<t<
<t+2,即0<t<
时,f (x)min=f (
)=-
;
③
≤t<t+2,即t≥
时,f (x)在[t,t+2]上单调递增,f (x)min=f (t)=tlnt;
所以f (x)min=
. ……5分
(II)2xlnx≥-x2+ax-3,则a≤2lnx+x+
, ……6分
设h (x)=2lnx+x+
(x>0),则h′(x)=
,x∈(0,1),h′(x)<0,h (x)单调递减,
x∈(1,+∞),h′(x)>0,h
(x)单调递增,所以h (x)min=h (1)=4,
因为对一切x∈(0,+∞),2f(x)≥g (x)恒成立,
所以a≤h (x)min=4.……10分
(III)问题等价于证明xlnx>
-
(x∈(0,+∞)),
由(I)可知f (x)=xlnx(x∈(0,+∞))的最小值是-
,当且仅当x=
时取到.
设m (x)=
-
(x∈(0,+∞)),则m ′(x)=
,
易得m (x)max=m (1)=-
,当且仅当x=1时取到,
从而对一切x∈(0,+∞),都有lnx>
-
. ……14分
解析
科目:高中数学 来源: 题型:解答题
(本题满分12分)已知函数
.
(1)若
对任意
恒成立
,求实数
的取值范围;
(2)若函数
的图像与直线
有且仅有三个公共点,且公共点的横坐标的最大值为
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设f(x)是定义在[-1,1]上的奇函数,且对任意的实数a,b∈[-1,1],当a+b
≠0时,都有
>0.
(1)若a>b,试比较f(a)与f(b)的大小;
(2)解不等式f(x
-
)<f(x-
);
(3)如果g(x)=f(x-c)和h(x)=f(x-c2)这两个函数的定义域的交集是空集,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某工厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少时,零件的实际出厂单价恰为51元;
(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;
(3)当销售商一次订购500个零件时,该厂获得的利润是多少?如果订购1 000个,利润又是多少?(工厂售出一个零件的利润=实际出厂单价-成本
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com