如图,已知椭圆
的上、下顶点分别为
,点
在椭圆上,且异于点
,直线
与直线
分别交于点
,![]()
(Ⅰ)设直线
的斜率分别为
,求证:
为定值;
(Ⅱ)求线段
的长的最小值;
(Ⅲ)当点
运动时,以
为直径的圆是否经过某定点?请证明你的结论.
(Ⅰ)
;(Ⅱ)
;(Ⅲ)
或
.
解析试题分析:(Ⅰ)
随点
运动而变化,故设点
表示
,进而化简整体消去变量;(Ⅱ)点
的位置由直线
,
生成,所以可用两直线方程解出交点坐标,求出
,它必是
的函数,利用基本不等式求出最小值; (Ⅲ)利用
的坐标求出圆的方程,方程必含有参数
,消去一个后,利用等式恒成立方法求出圆所过定点坐标.
试题解析:(Ⅰ)
,令
,则由题设可知
,
∴直线
的斜率
,
的斜率
,又点
在椭圆上,
所以
,(
),从而有
.
(Ⅱ)由题设可以得到直线
的方程为
,
直线
的方程为
,
由
, 由
,
直线
与直线
的交点
,直线
与直线
的交点
.
又
,![]()
等号当且仅当
即
时取到,故线段
长的最小值是
.
(Ⅲ)设点
是以
为直径的圆上的任意一点,则
,故有
,又
,所以以
为直径的圆的方程为
,令
解得
,
以
为直径的圆是否经过定点
和
.
考点:直线的交点,圆的方程,圆过定点问题,基本不等式的应用.
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知圆
,圆
,动圆
与圆
外切并且与圆
内切,圆心
的轨迹为曲线
。
(Ⅰ)求
的方程;
(Ⅱ)
是与圆
,圆
都相切的一条直线,
与曲线
交于
,
两点,当圆
的半径最长是,求
。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
的坐标分别是
、
,直线
相交于点
,且它们的斜率之积为
.
(1)求点
轨迹
的方程;
(2)若过点
的直线
与(1)中的轨迹
交于不同的两点
,试求
面积的取值范围(
为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的长轴两端点分别为
,
是椭圆上的动点,以
为一边在
轴下方作矩形
,使
,
交
于点
,
交
于点
.![]()
(Ⅰ)如图(1),若
,且
为椭圆上顶点时,
的面积为12,点
到直线
的距离为
,求椭圆的方程;
(Ⅱ)如图(2),若
,试证明:
成等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左右焦点分别为
,且经过点
,
为椭圆上的动点,以
为圆心,
为半径作圆
.
(1)求椭圆
的方程;
(2)若圆
与
轴有两个交点,求点
横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
的离心率等于
,点P
在椭圆上。
(1)求椭圆
的方程;
(2)设椭圆
的左右顶点分别为
,过点
的动直线
与椭圆
相交于
两点,是否存在定直线
:
,使得
与
的交点
总在直线
上?若存在,求出一个满足条件的
值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,以坐标原点
为极点,
轴的非负半轴为极轴建立极坐标系.已知曲线
的极坐标方程为
,直线
的参数方程为
为参数,
).
(Ⅰ)化曲线
的极坐标方程为直角坐标方程;
(Ⅱ)若直线
经过点
,求直线
被曲线
截得的线段
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的焦点
以及椭圆
的上、下焦点及左、右顶点均在圆
上.
(1)求抛物线
和椭圆
的标准方程;
(2)过点
的直线交抛物线
于
两不同点,交
轴于点
,已知
,求
的值;
(3)直线
交椭圆
于
两不同点,
在
轴的射影分别为
,
,若点
满足
,证明:点
在椭圆
上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com