【题目】从“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中,选出适当的一种填空:
(1)记集合A={-1,p,2},B={2,3},则“p=3”是“A∩B=B”的__________________;
(2)“a=1”是“函数f(x)=|2x-a|在区间
上为增函数”的________________.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
sinωx+cosωx(ω>0)的图象与x轴交点的横坐标构成一个公差为
的等差数列,把函数f(x)的图象沿x轴向左平移
个单位,得到函数g(x)的图象.若在区间[0,π]上随机取一个数x,则事件“g(x)≥
”发生的概率为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.
整理评分数据,将分数以
为组距分成
组:
,
,
,
,
,
,得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:
B餐厅分数频数分布表 | |
分数区间 | 频数 |
|
|
|
|
|
|
|
|
|
|
|
|
![]()
(Ⅰ)在抽样的100人中,求对A餐厅评分低于30的人数;
(Ⅱ)从对B餐厅评分在
范围内的人中随机选出2人,求2人中恰有1人评分在
范围内的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】①设三个正实数a , b , c , 满足
,求证:a , b , c一定是某一个三角形的三条边的长;
②设n个正实数 a1,a2,...an 满足不等式
(其中
),求证: a1,a2,...an 中任何三个数都是某一个三角形的三条边的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,点
是椭圆
:
上任意一点,线段
的垂直平分线
交于点
,点
的轨迹记为曲线
.
(Ⅰ)求曲线
的方程;
(Ⅱ)过
的直线交曲线
于不同的
,
两点,交
轴于点
,已知
,
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,曲线
在点
处的切线与直线
垂直(其中
为自然对数的底数).
(I)求
的解析式及单调递减区间;
(II)若存在
,使函数
成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com