【题目】已知
.
(1)求函数
的最小正周期和对称轴方程;
(2)若
,求
的值域.
【答案】(1)对称轴为
,最小正周期
;(2)![]()
【解析】
(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简得到
,由周期公式和对称轴公式可得答案;(2)由x的范围得到
,由正弦函数的性质即可得到值域.
(1)![]()
![]()
令
,则
的对称轴为
,最小正周期
;
(2)当
时,
,
因为
在
单调递增,在
单调递减,
在
取最大值,在
取最小值,
所以
,
所以
.
【点睛】
本题考查正弦函数图像的性质,考查周期性,对称性,函数值域的求法,考查二倍角公式以及辅助角公式的应用,属于基础题.
【题型】解答题
【结束】
21
【题目】已知等比数列
的前
项和为
,公比
,
,
.
(1)求等比数列
的通项公式;
(2)设
,求
的前
项和
.
科目:高中数学 来源: 题型:
【题目】已知一元二次函数的最大值为
,其图象的对称轴为
,且与
轴两个交点的横坐标的平方和为
.
(1)求该一元二次函数;
(2)要将该函数图象的顶点平移到原点,请说出平移的方式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
的左右焦点分别为
,与
轴正半轴交于点
,若
为等腰直角三角形,且直线
被圆
所截得的弦长为2.
(1)求椭圆的方程;
(2)直线
:
与椭圆交于点
,线段
的中点为
,射线
与椭圆交于点
,点
为
的重心,求证:
的面积
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的
四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“
或
作品获得一等奖”; 乙说:“
作品获得一等奖”;
丙说:“
,
两项作品未获得一等奖”; 丁说:“
作品获得一等奖”.
若这四位同学只有两位说的话是对的,则获得一等奖的作品是( )
A.
作品 B.
作品 C.
作品 D.
作品
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
,若a,b,c∈R,f(a),f(b),f(c)为某一个三角形的边长,则实数m的取值范围是( )
A.[
,1]
B.[0,1]
C.[1,2]
D.[
,2]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com