【题目】小明计划在8月11日至8月20日期间游览某主题公园.根据旅游局统计数据,该主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,40%以下为舒适,40%—60%为一般,60%以上为拥挤)情况如图所示.小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览2天.
(Ⅰ)求小明连续两天都遇上拥挤的概率;
(Ⅱ)设
是小明游览期间遇上舒适的天数,求
的分布列和数学期望;
(Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)
【答案】(1)
(2)
(3)从
月
日开始连续三天游览舒适度的方差最大.
【解析】试题分析:(Ⅰ)设
表示事件“小明8月11日起第
日连续两天游览主题公园”(
)且
,通过观察上表可知两天都遇上拥挤为
,故可得其概率;(Ⅱ)可知
的所有可能取值为
,计算出
,
,
,求出分布列,运用数学期望求解即可;(Ⅲ)根据方差的意义,仔细观察表即可得结果.
试题解析:设
表示事件“小明8月11日起第
日连续两天游览主题公园”(
).
根据题意,
,且
.
(Ⅰ)设
为事件“小明连续两天都遇上拥挤”,
则
.
所以
.
(Ⅱ)由题意,可知
的所有可能取值为
,
,
,
.
所以
的分布列为
|
|
|
|
|
|
|
|
故
的期望
.
(Ⅲ)从
月
日开始连续三天游览舒适度的方差最大.
科目:高中数学 来源: 题型:
【题目】已知函数
,
,其中
,
,
为自然对数的底数.
(Ⅰ)若
和
在区间
内具有相同的单调性,求实数
的取值范围;
(Ⅱ)若
,且函数
的最小值为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为4的直角三角形.
![]()
(1)求该椭圆的离心率和标准方程;
(2)过B1作直线交椭圆于P、Q两点,使PB2⊥QB2,求△PB2Q的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出80人作进一步调查,则在[1 500,2 000)(元)月收入段应抽出( )人. ![]()
A.15
B.16
C.17
D.18
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于
维向量
,若对任意
均有
或
,则称
为
维
向量. 对于两个
维
向量
定义
.
(1)若
, 求
的值;
(2)现有一个
维
向量序列:
若
且满足:
,求证:该序列中不存在
维
向量
.
(3) 现有一个
维
向量序列:
若
且满足:
,若存在正整数
使得
为
维
向量序列中的项,求出所有的
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义:在数列{an}中,若a
﹣a
=p(n≥2,n∈N* , p为常数),则称数列{an}为等方差数列,下列判断:
①若{an}是“等方差数列”,则数列{an2}是等差数列;
②{(﹣1)n}是“等方差数列”;
③若{an}是“等方差数列”,则数列{akn}(k∈N* , k为常数)不可能还是“等方差数列”;
④若{an}既是“等方差数列”,又是等差数列,则该数列是常数列.
其中正确的结论是 . (写出所有正确结论的编号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在几何体
中,平面
平面
,四边形
为菱形,且
,
,
∥
,
为
中点.
(Ⅰ)求证:
∥平面
;
(Ⅱ)求直线
与平面
所成角的正弦值;
(Ⅲ)在棱
上是否存在点
,使
? 若存在,求
的值;若不存在,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)=3 700x+45x2-10x3(单位:万元),成本函数为C(x)=460x-5 000(单位:万元).
(1)求利润函数P(x);(提示:利润=产值-成本)
(2)问年造船量安排多少艘时,可使公司造船的年利润最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com