精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)是R上奇函数,且当x>0时,f(x)=1,则函数y=f(x)的表达式是
 
分析:先设x<0,则-x>0,代入当x>0时的解析式,在根据函数的奇函数进行化简即可求出x<0时的解析式,再求出x=0时的值,最后用分段函数表示即可.
解答:解:设x<0,则-x>0
f(-x)=1
而函数y=f(x)是R上奇函数
则f(-x)=-f(x)=1即f(x)=-1
∴当x<0时,f(x)=-1
根据函数y=f(x)是R上奇函数
则f(-0)=-f(0)=f(0)即f(0)=0
综上所述函数y=f(x)的表达式是f(x)=
1,(x>0)
0,(x=0)
-1,(x<0)

故答案为:f(x)=
1,(x>0)
0,(x=0)
-1,(x<0)
点评:本题考查函数的奇偶性的应用,以及函数的解析式的求解和分段函数的表示,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案