椭圆
:
的左顶点为
,直线
交椭圆
于
两点(
上
下),动点
和定点
都在椭圆
上.
(1)求椭圆方程及四边形
的面积.
(2)若四边形
为梯形,求点
的坐标.
(3)若
为实数,
,求
的最大值.
(1)
;
.(2)
. (3)
.
解析试题分析:(1)将D的坐标代入
即得
,从而得椭圆的方程为
.
将
代入
得
.由此可得
和
的面积,二者相加即得四边形
的面积.(2)在椭圆中AP不可能平行BC,四边形ABCP又为梯形,所以必有
,由此可得直线PC的方程,从而求得点P的坐标.(3)设
,由
得则
与
间的关系,即
,又因为点P在椭圆上,所以
,由此可得
,这样利用三角函数的范围便可求得
的最大值.
(1)因为点D在椭圆上,所以
,
所以椭圆的方程为
.
易得:
,
的面积为
.
直线BD的方程为
,即
.所以点A到BD的距离为
,
,
.
所以
.
(2)四边形ABCP为梯形,所以
,直线PC的方程为:
即
.代入椭圆方程得
(舍),
将
代入
得
.所以点P的坐标为
.
(3)设
,则
,即![]()
因为点P在椭圆上,所以
,
由此可得
,
所以
.
考点:1、椭圆的方程;2、四边形的面积;3、向量.
科目:高中数学 来源: 题型:解答题
已知圆
的方程为
,定直线
的方程为
.动圆
与圆
外切,且与直线
相切.
(1)求动圆圆心
的轨迹
的方程;
(2)直线
与轨迹
相切于第一象限的点
, 过点
作直线
的垂线恰好经过点
,并交轨迹
于异于点
的点
,求直线
的方程及
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分)(2011•天津)设椭圆
+
=1(a>b>0)的左、右焦点分别为F1,F2.点P(a,b)满足|PF2|=|F1F2|.
(Ⅰ)求椭圆的离心率e;
(Ⅱ)设直线PF2与椭圆相交于A,B两点,若直线PF2与圆(x+1)2+
=16相交于M,N两点,且|MN|=
|AB|,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆
的圆心在坐标原点
,且恰好与直线
相切,设点A为圆上一动点,
轴于点
,且动点
满足
,设动点
的轨迹为曲线![]()
(1)求曲线C的方程,
(2)直线l与直线l,垂直且与曲线C交于B、D两点,求△OBD面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
的左、右焦点分别为
,上顶点为A,在x轴负半轴上有一点B,满足
三点的圆与直线
相切.
(1)求椭圆C的方程;
(2)过右焦点
作斜率为k的直线
与椭圆C交于M,N两点,线段MN的垂直平分线与x轴相交于点P(m,0),求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,其短轴两端点为
.
(1)求椭圆
的方程;
(2)若
是椭圆
上关于
轴对称的两个不同点,直线
与
轴分别交于点
.判断以
为直径的圆是否过点
,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
,
为坐标原点,椭圆的右准线与
轴的交点是
.
(1)点
在已知椭圆上,动点
满足
,求动点
的轨迹方程;
(2)过椭圆右焦点
的直线与椭圆交于点
,求
的面积的最大值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com