精英家教网 > 高中数学 > 题目详情
如图,在体积为1的三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥AC,AC=AA1=1,P为线段AB上的动点.
(1)求证:CA1⊥C1P;
(2)当AP为何值时,二面角C1-PB1-A1的大小为

【答案】分析:(1)先以A为原点,AC,AB,AA1所在的直线分别为x轴,y轴,z轴建立直角坐标系,求出各点的坐标以及对应向量的坐标,进而得到=0即可得到结论;
(2)分别求出两个半平面的法向量,再代入向量的夹角计算公式即可得到结论.
解答:解:(1)证明:∵AA1⊥底面ABC,∴AA1⊥AC,AA1⊥AB.
又∵AB⊥AC,
∴以A为原点,AC,AB,AA1所在的直线分别为x轴,y轴,z轴建立直角坐标系.
又∵V=AB×AC×AA1=1,∴AB=2.(2分)
设AP=m,则P(0,m,0),而C1(1,0,1),C(1,0,0),A1(0,0,1),B1(0,2,1)
=(-1,0,1),=(-1,m,-1),=(-1,2,0)
=(-1)×(-1)+0×m+1×(-1)=0,
∴CA1⊥C1P.(6分)
(2)设平面C1PB1的一个法向量=(x,y,z),
令y=1,则=(2,1,m-2),(9分)
而平面A1B1P的一个法向量=(1,0,0),
依题意可知cos==
∴m=2+(舍去)或m=2-
∴当AP=2-时,二面角C1-PB1-A1的大小为.(12分)
点评:本题主要考查用空间向量求平面间的夹角以及用向量语言表述线线的垂直、平行关系.是对向量知识在立体几何中应用的综合考察.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在体积为1的三棱锥A-BCD侧棱AB、AC、AD上分别取点E、F、G,使AE:EB=AF:FC=AG:GD=2:1,记O为三平面BCG、CDE、DBF的交点,则三棱锥O-BCD的体积等于(  )
A、
1
9
B、
1
8
C、
1
7
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在体积为1的三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC⊥AB,AC=AA1=1,P为线段AB上的动点.
(1)求证:CA1⊥C1P;
(2)求CA1与平面AB1C1所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•蓝山县模拟)如图,在体积为1的三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥AC,AC=AA1=1,P为线段AB上的动点.
(1)求证:CA1⊥C1P;
(2)当AP为何值时,二面角C1-PB1-A1的大小为
π6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在体积为1的三棱锥A—BCD的侧棱AB,AC,AD上分别取点E,F,G,使AE∶EB=AF∶FC=AG∶GD=2∶1,记O为三平面BCG,CDE,DBF的交点,则三棱锥O—BCD的体积等于(    )

A.                   B                  C.                 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在体积为1的三棱锥A—BCD侧棱AB、AC、AD上分别取点E、F、G, 使AE : EB=AF : FC=AG : GD=2 : 1,记O为三平面BCG、CDE、DBF的交点,则三棱锥O—BCD的体积等于        (    )

 

 

 

 

 

 

 

 

 

A.        B.     C.           D.

查看答案和解析>>

同步练习册答案