精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax2+blnx,其中ab≠0.
证明:当ab>0时,函数f(x)没有极值点;当ab<0时,函数f(x)有且只有一个极值点,并求出极值.
分析:因为函数有没有极值点是由导函数等于0有没有根决定的,故转化为证ab>0时导函数等于0没有根;ab<0时,导函数有且只有一个根,且在根的两侧导函数不同号即可.
解答:证明:因为f(x)=ax2+blnx,ab≠0,所以f(x)的定义域为(0,+∞).f'(x)=2ax+
b
x
=
2ax2+b
x

当ab>0时,如果a>0,b>0,f'(x)>0,f(x)在(0,+∞)上单调递增;
如果a<0,b<0,f'(x)<0,f(x)在(0,+∞)上单调递减.
所以当ab>0,函数f(x)没有极值点.
当ab<0时,f′(x)=
2a(x+
-
b
2a
)(x-
-
b
2a
)
x

令f'(x)=0,
x1=-
-
b
2a
∉(0,+∞)
(舍去),x2=
-
b
2a
∈(0,+∞)

当a>0,b<0时,f'(x),f(x)随x的变化情况如下表:
精英家教网
从上表可看出,
函数f(x)有且只有一个极小值点,极小值为f(
-
b
2a
)=-
b
2
[1-ln(-
b
2a
)]

当a<0,b>0时,f'(x),f(x)随x的变化情况如下表:
精英家教网
从上表可看出,
函数f(x)有且只有一个极大值点,极大值为f(
-
b
2a
)=-
b
2
[1-ln(-
b
2a
)]

综上所述,
当ab>0时,函数f(x)没有极值点;
当ab<0时,
若a>0,b<0时,函数f(x)有且只有一个极小值点,极小值为-
b
2
[1-ln(-
b
2a
)]

若a<0,b>0时,函数f(x)有且只有一个极大值点,极大值为-
b
2
[1-ln(-
b
2a
)]
点评:本题考查利用导函数来研究函数的极值以及对分类讨论思想的考查.分类讨论思想在数学中是非常重要的思想之一,所以希望能加强这方面的训练.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
xx-1
(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c是△ABC的三条边,且c>a,c>b,则“△ABC为钝角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)设函数f(x)=ax+1-2(a>1)的反函数为y=f-1(x),则f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步练习册答案