如图,在长方体
中,
,点
是棱
上的一个动点.![]()
(1)证明:
;
(2)当
为
的中点时,求点
到面
的距离;
(3)线段
的长为何值时,二面角
的大小为
.
(1)详见解析;(2)
;(3)
.
解析试题分析:解决立体几何中的垂直、距离及空间角,有几何法与空间向量法,其中几何法,需要学生具备较强的空间想象能力及扎实的立体几何理论知识;向量法,则要求学生能根据题意准确建立空间直角坐标系,写出有效点、有效向量的坐标必须准确无误,然后将立体几何中的问题的求解转化为坐标的运算问题,这也需要学生具备较好的代数运算能力.
几何法:(1)要证![]()
,只须证明
平面
,然后根据线面垂直的判定定理进行寻找条件即可;(2)运用
的关系进行计算即可求出点
到面
的距离;(3)先作
于
,连接
,然后充分利用长方体的性质证明
为二面角
的平面角,最后根据所给的棱长与角度进行计算即可得到线段
的长.
向量法: (1)建立空间坐标,分别求出
的坐标,利用数量积等于零即可;(2)当
为
的中点时,求点
到平面
的距离,只需找平面
的一条过
点的斜线段
在平面
的法向量上的投影即可;(3)设
,因为平面
的一个法向量为
,只需求出平面
的法向量,然后利用二面角为
,根据夹角公式,求出
即可.
试题解析:解法一:(1)∵
平面
,∴
,又∵
,
∩
,∴
平面
,![]()
4分
(2)等体积法:由已知条件可得,
,
,所以
为等腰三角形![]()
=
, ![]()
,设点
到平面
的距离
,根据
可得,
,即
,解得
8分
(3)过点
作
于
,连接![]()
![]()
因为
平面
,所以
,又
,
∩
,所以
平面![]()
故![]()
,![]()
科目:高中数学 来源: 题型:解答题
在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.若M是线段AD的中点,![]()
求证:GM∥平面ABFE.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,平面
平面
,
是等腰直角三角形,
,四边形
是直角梯形,
∥AE,![]()
![]()
,
,
分别为
的中点.![]()
(1)求异面直线
与
所成角的大小;
(2)求直线
和平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,已知
的直径
,点
、
为
上两点,且
,
,
为弧
的中点.将
沿直径
折起,使两个半圆所在平面互相垂直(如图2).![]()
(Ⅰ)求证:
;
(Ⅱ)在弧
上是否存在点
,使得
平面
?若存在,试指出点
的位置;若不存在,请说明理由;
(Ⅲ)求二面角
的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知三棱柱
的侧棱长和底面边长均为2,
在底面ABC内的射影O为底面△ABC的中心,如图所示:![]()
(1)联结
,求异面直线
与
所成角的大小;
(2)联结
、
,求三棱锥C1-BCA1的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com