精英家教网 > 高中数学 > 题目详情

已知函数 数学公式
(Ⅰ)若直线l与曲线y=f(x)相切,切点是P(2,0),求直线l的方程;
(Ⅱ)讨论f(x)的单调性.

解:(I)因为切点是P(2,0),
,∴a=0,
∴函数f(x)=,又f′(x)=x-1,
所以切线的斜率为:f′(2)=1.
所以切线l的方程为y=x-2.
函数
(II)由题意得,f′(x)=-(1+a)+x=(x>0)
由f′(x)=0,得x1=1,x2=a
①当0<a<1时,令f′(x)>0,x>0,可得0<x<a或x>1;
令f′(x)<0,x>0,可得a<x<1,
∴函数f(x)的单调增区间是(0,a)和(1,+∞),单调减区间是(a,1);
②当a=1时,f′(x)=≥0,当且仅当x=1时,f′(x)=0,
所以函数f(x)在区间(0,+∞)上是单调增函数;
③当a>1时,令f′(x)>0,x>0,可得0<x<1或x>a;
令f′(x)<0,x>0,可得1<x<a
∴函数f(x)的单调增区间是(0,1)和(a,+∞),单调减区间是(1,a).
分析:(I)先由切点是P(2,0),代入函数解析式求出a,再求导函数,确定切线的斜率,从而可求曲线y=f(x)在x=2处切线的方程;
(II)求导函数,求出函数的零点,再进行分类讨论,从而可确定函数y=f(x)的单调性与单调区间.
点评:本题重点考查导数知识的运用,考查导数的几何意义,考查函数的单调性,利用导数的正负确定函数的单调性是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log
13
x
,若f(a3)+f(b3)=6,则f(ab)的值等于
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)、g(x)的定义域分别为M,N,且M⊆N,若对任意的x∈M,都有g(x)=f(x),则称g(x)是f(x)的“拓展函数”.已知函数f(x)=
1
3
log2x
,若g(x)是f(x)的“拓展函数”,且g(x)是偶函数,则符合条件的一个g(x)的解析式是
g(x)=
1
3
log2|x|
(其它符合条件的函数也可)
g(x)=
1
3
log2|x|
(其它符合条件的函数也可)

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.

已知函数

(1)若,求的值;

(2)若对于恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江省海林市高二下学期期中考试理科数学试卷(解析版) 题型:解答题

已知函数

(1)若曲线与曲线在它们的交点(1,c)处具有公共切线,求,的值;

(2)当时,若函数在区间[,2]上的最大值为28,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省如东县高三12月四校联考文科数学试卷(解析版) 题型:解答题

(本小题满分16分)

已知函数

(1)若上的最大值为,求实数的值;

(2)若对任意,都有恒成立,求实数的取值范围;

(3)在(1)的条件下,设,对任意给定的正实数,曲线 上是否存在两点,使得是以为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由。

 

查看答案和解析>>

同步练习册答案