【题目】已知函数
(
为常数,
).给你四个函数:①
;②
;③
;④
.
(1)当
时,求不等式
的解集;
(2)求函数
的最小值;
(3)在给你的四个函数中,请选择一个函数(不需写出选择过程和理由),该函数记为
,
满足条件:存在实数a,使得关于x的不等式
的解集为
,其中常数s,
,且
.对选择的
和任意
,不等式
恒成立,求实数a的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥平面ABCD,点E、F分别是AB和PC的中点.
![]()
(1)求证:AB⊥平面PAD;
(2)求证:EF//平面PAD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
为圆
上一点,
轴于点
,
轴于点
,点
满足
(
为坐标原点),点
的轨迹为曲线
.
(Ⅰ)求
的方程;
(Ⅱ)斜率为
的直线
交曲线
于不同的两点
、
,是否存在定点
,使得直线
、
的斜率之和恒为0.若存在,则求出点
的坐标;若不存在,则请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为
,且过点
.点M(3,m)在双曲线上.
(1)求双曲线的方程;
(2)求证:
;
(3)求△F1MF2的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平行四边形
中,
,
,以
为折痕将△
折起,使点
到达点
的位置,且
.
(1)证明:平面
平面
;
(2)
为线段
上一点,
为线段
上一点,且
,求三棱锥
的体积.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
:
,定点
,
是圆
上的一动点,线段
的垂直平分线交半径
于
点.
(1)求
点的轨迹
的方程;
(2)四边形
的四个顶点都在曲线
上,且对角线
、
过原点
,若
,求证:四边形
的面积为定值,并求出此定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com