精英家教网 > 高中数学 > 题目详情
已知P为棱长为1的正方体ABCD-A1B1C1D1内(含正方体表面)任意一点,则
AP
AC
的最大值为
2
2
分析:写出数量积的表达式,利用向量的投影,判断P的位置,然后求出数量积的最大值.
解答:解:由题意画出图形如图,
因为
AP
AC
=|
AP
||
AC
|
cos
AP
AC

|
AP
| cos<
AP
AC
是向量
AP
AC
上的投影,
所以当P在C1位置时,投影最大,
AP
AC
的最大值为:
AC
2
=(
12+12
)
2
=2.
故答案为:2.
点评:本题考查向量的数量积,向量的投影,表达式的几何意义,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正四棱柱ABCD-A1B1C1D1的底面边长AB=6,侧棱长AA1=2
7
,它的外接球的球心为O,
点E是AB的中点,点P是球O的球面上任意一点,有以下判断:
(1)PE长的最大值是9;
(2)P到平面EBC的距离最大值是4+
7

(3)存在过点E的平面截球O的截面面积是3π;
(4)三棱锥P-AEC1体积的最大值是20.
其中正确判断的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱柱ABCD-A1B1C1D1的底面边长AB=6,侧棱长AA1=2
7
,它的外接球的球心为O,点E是AB的中点,点P是球O的球面上任意一点,有以下判断,
(1)PE长的最大值是9;(2)三棱锥P-EBC的最大值是
32
3
;(3)存在过点E的平面,截球O的截面面积是3π;(4)三棱锥P-AEC1体积的最大值是20.
正确的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱ABC-A1B1C的各条棱长都为a,P为A1B上的点,且PC⊥AB
(1)求二面角P-AC-B的正切值;
(2)求点B到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱柱ABCD-A1B1C1D1的底面边长为4,侧棱长为6,Q为BB1的中点,P∈DD1,M∈AB,N∈CD且AM=1,DN=3,(I)若PD=
32
,证明:(I)D1Q∥面PMN;
(II)若P为DD1的中点,求面PMN与面AA1D1D所成二面角的大小;
(III)在(II)的条件下,求点Q到面PMN的距离.

查看答案和解析>>

科目:高中数学 来源:宜宾一模 题型:填空题

已知正四棱柱ABCD-A1B1C1D1的底面边长AB=6,侧棱长AA1=2
7
,它的外接球的球心为O,点E是AB的中点,点P是球O的球面上任意一点,有以下判断,
(1)PE长的最大值是9;(2)三棱锥P-EBC的最大值是
32
3
;(3)存在过点E的平面,截球O的截面面积是3π;(4)三棱锥P-AEC1体积的最大值是20.
正确的是______.

查看答案和解析>>

同步练习册答案