精英家教网 > 高中数学 > 题目详情
已知函数f(x)=a•lnx+b•x2在点(1,f(1))处的切线方程为x-y-1=0.
(1)求f(x)的表达式;
(2)若f(x)满足f(x)≥g(x)恒成立,则称f(x)是g(x)的一个“上界函数”,如果函数(t为实数)的一个“上界函数”,求t的取值范围;
(3)当m>0时,讨论在区间(0,2)上极值点的个数.
【答案】分析:(1)把x=1代入切线方程得到y=0,得到切点坐标,把切点坐标代入f(x)中,解得b的值,求出f(x)的导函数,把b的值代入后,再根据′(1)=1,求出a的值,把a与b的值代入即可确定出f(x);
(2)把(1)求出的f(x)和g(x)的解析式代入题中的不等式中,不等式要恒成立,即要当x大于0时,t小于等于一个关系式,设这个关系式为一个函数h(x),求出h(x)的导函数,令导函数等于0求出x的值,利用x的值分区间讨论导函数的正负,得到函数h(x)的单调区间,根据函数的增减性得到h(x)的最小值,进而得到t的取值范围;
(3)把(1)中求出的f(x)代入确定出F(x)的解析式,求出F(x)的导函数,令导函数等于0,得到x+等于一个关系式,设y=x+,且x大于0小于2,画出该函数的图象,如图所示,然后分m=1,m大于小于2,m大于0小于等于和m大于等于2,四种情况,根据函数的图象,即可得到相应区间上极值点的个数.
解答:解:(1)当x=1时,y=0,代入f(x)=a•lnx+b•x2,可得:b=0,
所以f′(x)=,由切线方程知f′(1)=1,所以a=1,
因此a=1,b=0,所以f(x)=lnx;
(2)把f(x)和g(x)的解析式代入得:-lnx≤lnx恒成立,
因为x>0,所以只需要t≤2xlnx在(0,+∞)恒成立即可,
令h(x)=2xlnx,则h′(x)=2(1+lnx),
当x∈(0,)时,h′(x)<0,所以h(x)在(0,)上是减函数,
当x∈(,+∞)时,h′(x)>0,所以h(x)在(,+∞)上是增函数,
所以h(x)min=h()=-,所以t≤-
(3)由已知得F(x)=lnx+-x,所以F′(x)=+x-
令F′(x)=0,得到+x=,令y=x+,x∈(0,2),
画出该函数的图象,如图所示:

①当=2,即m=1时,F′(x)=0在区间(0,2)上只有一个根1,且在1的两侧,
x+>2,即在1的两侧F′(x)同正,此时F(x)在(0,2)上无极值点;
②当2<,即<m<2,且m≠1时,F′(x)=0在区间(0,2)上有两个不等根,
不妨设为x1,x2,且x1<x2,从图象上看在x1和x2两侧F′(x)=x+-都是异号的,
因此x1和x2都是F(x)的极值点,此时F(x)在(0,2)上有两个极值点;
③当,即0<m≤时,方程在区间(0,2)上只有一个根m,
由该方程所对应的二次函数图象可知,F′(x)在m两侧的符号不同,
因此函数F(x)在区间(0,2)上只有一个极值点;
④当,即m≥2时,方程在区间(0,2)上只有一个根
由该方程所对应的二次函数图象可知,F′(x)在两侧的符号不同,
因而函数F(x)在区间(0,2)上只有一个极值点,
综上,当m=1时,函数F(x)在区间(0,2)上无极值点;
当m∈(0,)∪[2,+∞)时,函数F(x)在区间(0,2)上有一个极值点;
当m∈(,1)∪(1,2)时,函数F(x)在区间(0,2)上有两个极值点.
点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,会利用导数研究函数的极值,掌握导数在最大值、最小值问题中的应用,考查了分类讨论和数形结合的数学思想,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案