精英家教网 > 高中数学 > 题目详情
已知椭圆的焦点是F1(-4,0)、F2(4,0),过F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上的不同两点A(x1,y1)、C(x2,y2)满足条件|F2A|、|F2B|、|F2C|成等差数列.

(1)求椭圆的方程;

(2)求弦AC中点的横坐标;

(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.

(1)由椭圆定义及已知条件知2a=|F1B|+|F2B|=10,∴a=5.

又c=4,∴b2=a2-c2=9.

故椭圆方程为+=1.                                                    

(2)由点B在椭圆上,可知|F2B|=|yB|=,而椭圆的右准线方程为x=,离心率为

由椭圆定义有|F2A|=(-x1),|F2C|=(-x2).

依题意|F2A|+|F2C|=2|F2B|.

(-x1)+(-x2)=2×.

∴x1+x2=8.

设弦AC的中点为P(x0,y0),则x0==4,

即弦AC的中点的横坐标为4.                                               

(3)由A(x1,y1),C(x2,y2)在椭圆上得9x12+25y12=9×25,9x22+25y22=9×25.

两式相减整理得9()+25()()=0(x1≠x2).

=x0=4,=y0=-(k≠0)代入得

9×4+25y0(-)=0,即k=y0.

由于P(4,y0)在弦AC的垂直平分线上,

∴y0=4k+m,于是m=y0-4k=y0-y0=-y0.

而-<y0,∴-<m<

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

7、已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,过点F2向∠F1PF2的外角平分线作垂线,垂足为M,则点M的轨迹是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点是F1(-1,0),F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|和|PF2|的等差中项.
(Ⅰ)求椭圆的方程;
(Ⅱ)求△PF1F2面积的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点是F1(0,-1)和F2(0,1),离心率e=
12

(I)求此椭圆的标准方程;
(Ⅱ)设点P在此椭圆上,且有|PF1|-|PF2|=1,求∠F1PF2的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点是F1,F2,P是椭圆上的一个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是(  )
A、椭圆B、双曲线的一支C、抛物线D、圆

查看答案和解析>>

同步练习册答案