如图,三棱锥
中,侧面
底面
,
,且
,
.(Ⅰ)求证:
平面
;
(Ⅱ)若
为侧棱PB的中点,求直线AE与底面
所成角的正弦值.
![]()
【解析】第一问中,利用由
知,
,
又AP=PC=2,所以AC=2
,
又AB=4, BC=2
,,所以
,所以
,即
,
又平面
平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以
第二问中结合取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,因为PA=PC,所以PO⊥AC,同(Ⅰ)易证
平面ABC,又EH//PO,所以EH平面
ABC ,
则
为直线AE与底面ABC 所成角,
![]()
解
(Ⅰ) 证明:由用由
知,
,
又AP=PC=2,所以AC=2
,
又AB=4, BC=2
,,所以
,所以
,即
,
又平面
平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以![]()
………………………………………………6分
(Ⅱ)如图, 取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,
因为PA=PC,所以PO⊥AC,同(Ⅰ)易证
平面ABC,
又EH//PO,所以EH平面
ABC ,
则
为直线AE与底面ABC 所成角,
且
………………………………………10分
又PO=1/2AC=
,也所以有EH=1/2PO=
,
由(Ⅰ)已证
平面PBC,所以
,即
,
故
,
于是![]()
所以直线AE与底面ABC 所成角的正弦值为![]()
![]()
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
科目:高中数学 来源:2013-2014学年黑龙江哈师大附中高三上期期中考试理科数学试卷(解析版) 题型:解答题
如图,在三棱锥
中,侧面
与底面
垂直,
分别是
的中点,
,
,
.
![]()
(1)若点
在线段
上,问:无论
在
的何处,是否都有
?请证明你的结论;
(2)求二面角
的平面角的余弦.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年黑龙江哈师大附中高三上期期中考试文科数学试卷(解析版) 题型:解答题
如图,在三棱锥
中,侧面
与底面
垂直,
分别是
的中点,
,
,
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)若点
为线段
的中点,求异面直线
与
所成角的正切值.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年广东省韶关市高三第一次调研测试数学理科试卷(解析版) 题型:解答题
如图,三棱锥
中,
底面
于
,
,
,点
是
的中点.
![]()
(1)求证:侧面
平面
;
(2)若异面直线
与
所成的角为
,且
,
求二面角
的大小.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年河南郑州盛同学校高三4月模拟考试文科数学试卷(解析版) 题型:解答题
如图,三棱锥
中,
底面ABC于B,
=900,
,点E、F分别是PC、AP的中点。
![]()
(1)求证:侧面
;
(2)求异面直线AE与BF所成的角;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com