精英家教网 > 高中数学 > 题目详情

.过点和双曲线右焦点的直线方程为                 .


解析:

,故,双曲线的右焦点为.

,故直线的方程为,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网圆锥曲线上任意两点连成的线段称为弦.若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦.已知椭圆C:
x2
4
+y2=1

(1)过椭圆C的右焦点作一条垂直于x轴的垂轴弦MN,求MN的长度;
(2)若点P是椭圆C上不与顶点重合的任意一点,MN是椭圆C的短轴,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0)(如图),求xE?xF的值;
(3)在(2)的基础上,把上述椭圆C一般化为
x2
a2
+
y2
b2
=1(a>b>0)
,MN是任意一条垂直于x轴的垂轴弦,其它条件不变,试探究xE?xF是否为定值?(不需要证明);请你给出双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
中相类似的结论,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆E的方程为
x2
a2
+
y2
b2
=1(a>b>0)双曲线
x2
a2
-
y2
b2
=1的两条渐近线为l1和l2,过椭圆E的右焦点F作直线l,使得l⊥l2于点C,又l与l1交于点P,l与椭圆E的两个交点从上到下依次为A,B(如图).
(1)当直线l1的倾斜角为30°,双曲线的焦距为8时,求椭圆的方程;
(2)设
PA
=λ1
AF
PB
=λ2
BF
,证明:λ12为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点和双曲线右焦点的直线方程为                       .

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省桐乡市高三模拟考试(2月)理科数学试卷(解析版) 题型:选择题

如图,设是双曲线的左、右焦点,过作与渐近线平行的直线分别交轴和双曲线右支于点,过作直线的垂线,垂足为,若,则双曲线的离心率为(  )

A.             B.              C.2                D.3

 

查看答案和解析>>

同步练习册答案