精英家教网 > 高中数学 > 题目详情

(本题满分12分)如图,在四棱锥P―ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点 

(1)求证  CDPD;

(2)求证  EF∥平面PAD;

(3)当平面PCD与平面ABCD成角时,求证:直线EF⊥平面PCD。

 

证明 : (1)∵PA⊥底面ABCD,∴AD是PD在平面ABCD内的射影,

∵CD平面ABCD且CD⊥AD,∴CD⊥PD  (4分)

(2)取CD中点G,连EG、FG,

∵E、F分别是AB、PC的中点,∴EG∥AD,FG∥PD

∴平面EFG∥平面PAD,故EF∥平面PAD(8分)

(3)G为CD中点,则EG⊥CD,由(1)知FG⊥CD,

故∠EGF为平面PCD与平面ABCD所成二面角的平面角 

即∠EGF=45°,从而得∠ADP=45°,AD=AP

由Rt△PAE≌ Rt△ CBE,得PE=CE又F是PC的中点,

∴EF⊥ PC,由CD⊥ EG,CD⊥ FG,得CD⊥ 平面EFG,CD⊥ EF

即EF⊥ CD,故EF⊥ 平面PCD  (12分)
练习册系列答案
相关习题

科目:高中数学 来源:2014届江西高安中学高二上期末考试理科数学试卷(解析版) 题型:解答题

(本题满分12分)

如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. 的中点.

(1)当时,求平面与平面的夹角的余弦值;

(2)当为何值时,在棱上存在点,使平面

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省八市高三3月联考理科数学试卷(解析版) 题型:解答题

(本题满分12分)如图,在长方体中,已知上下两底面为正方形,且边长均为1;侧棱,为中点,中点,上一个动点.

(Ⅰ)确定点的位置,使得

(Ⅱ)当时,求二面角的平

面角余弦值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广西桂林中学高三7月月考试题理科数学 题型:解答题

(本题满分12分)如图,在四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中点,F是AD的中点.

 ⑴求异面直线PD与AE所成角的大小;

 ⑵求证:EF⊥平面PBC ;

 ⑶求二面角F—PC—B的大小..

 

 

查看答案和解析>>

科目:高中数学 来源:2011年湖南省招生统一考试文科数学 题型:解答题

 

(本题满分12分)

如图3,在圆锥中,已知的直径的中点.

(I)证明:

(II)求直线和平面所成角的正弦值.

 

 

查看答案和解析>>

科目:高中数学 来源:2010年海南省高三五校联考数学(文) 题型:解答题

(本题满分12分)

如图,三棱锥S—ABC中,AB⊥BC,D、E分别为AC、BC的中点,SA=SB=SC。

   (1)求证:BC⊥平面SDE;

   (2)若AB=BC=2,SB=4,求三棱锥S—ABC的体积。

 

查看答案和解析>>

同步练习册答案