如图,斜率为
的直线过抛物线
的焦点,与抛物线交于两点A、B, M为抛物线弧AB上的动点.![]()
(Ⅰ).若
,求抛物线的方程;
(Ⅱ).求△ABM面积
的最大值.
科目:高中数学 来源: 题型:解答题
已知椭圆
的左右两焦点分别为
,
是椭圆上一点,且在
轴上方,![]()
.![]()
(1)求椭圆的离心率
的取值范围;
(2)当
取最大值时,过
的圆
的截
轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线
上任一点
引圆
的两条切线,切点分别为
.试探究直线
是否过定点?若过定点,请求出该定点;否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,斜率为
的直线过抛物线
的焦点,与抛物线交于两点A、B, M为抛物线弧AB上的动点.![]()
(Ⅰ)若
,求抛物线的方程;
(Ⅱ)求△ABM面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定点F(2,0)和定直线
,动圆P过定点F与定直线相切,记动圆圆心P的轨迹为曲线C
(1)求曲线C的方程.
(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的顶点为原点,其焦点
到直线
的距离为
.设
为直线
上的点,过点
作抛物线
的两条切线
,其中
为切点.
(Ⅰ)求抛物线
的方程;
(Ⅱ)设点
为直线
上的点,求直线
的方程;
(Ⅲ) 当点
在直线
上移动时,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
抛物线
的焦点均在
轴上,
的中心和
的顶点均为坐标原点
从每条曲线上取两个点,将其坐标记录于下表中:
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在周长为定值的DDEC中,已知
,动点C的运动轨迹为曲线G,且当动点C运动时,
有最小值
.
(1)以DE所在直线为x轴,线段DE的中垂线为y轴建立直角坐标系,求曲线G的方程;
(2)直线l分别切椭圆G与圆
(其中
)于A、B两点,求|AB|的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
与双曲线
有公共焦点
,点
是曲线
在第一象限的交点,且
.
(1)求双曲线
的方程;
(2)以双曲线
的另一焦点
为圆心的圆
与直线
相切,圆
.过点
作互相垂直且分别与圆
、圆
相交的直线
和
,设
被圆
截得的弦长为
,
被圆
截得的弦长为
,问:
是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设点A(
,0),B(
,0),直线AM、BM相交于点M,且它们的斜率之积为
.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)若直线
过点F(1,0)且绕F旋转,
与圆
相交于P、Q两点,
与轨迹C相交于R、S两点,若|PQ|
求△
的面积的最大值和最小值(F′为轨迹C的左焦点).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com