精英家教网 > 高中数学 > 题目详情

f(x)、g(x)都是定义在R上的奇函数,且F(x)=3f(x)+5g(x)+2,若F(a)=b,则F(-a)等于

[  ]

A.-b+4

B.-b+2

C.b-2

D.b+2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域是全体实数的函数y=f(x)满足f(x+2π)=f(x),且函数g(x)=
f(x)+f(-x)
2
,函数h(x)=
f(x)-f(-x)
2
.现定义函数p(x),q(x)为:p(x)=
g(x)-g(x+π)
2cosx
(x≠kπ+
π
2
)
0         (x=kπ+
π
2
)
,q(x)=
h(x)+h(x+π)
2sin2x
(x≠
2
)
0      (x=
2
)
,其中k∈Z,那么下列关于p(x),q(x)叙述正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)、g(x)都是单调函数,有下列命题:①若f(x)是增函数,g(x)是增函数,则f(x)-g(x)是增函数;②若f(x)是增函数,g(x)是减函数,则f(x)-g(x)是增函数;③若f(x)是减函数,g(x)是增函数,则f(x)-g(x)是减函数;④若f(x)是减函数,g(x)是减函数,则f(x)-g(x)是减函数.

其中正确的命题是(    )

A.①③                B.①④                C.②③                D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)和g(x)都是定义域为R的函数,且x-f[g(x)]=0有实数解,则f[g(x)]不可能是

(    )

A.x2+x-           B.x2+x+            C.x2-             D.x2+

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省温州市高三上学期期初考试文科数学试卷(解析版) 题型:选择题

若函数f(x)和g(x)的定义域、值域都是R,则不等式f(x)> g(x)有解的充要条件是(    )

(A)$ x∈R, f(x)>g(x)                         (B)有无穷多个x (x∈R ),使得f(x)>g(x)

(C)" x∈R,f(x)>g(x)                         (D){ x∈R| f(x)≤g(x)}=F

 

查看答案和解析>>

科目:高中数学 来源:2010年江苏省高二下学期期末考试数学卷 题型:解答题

(本小题满分16分)

已知f (x)、g(x)都是定义在R上的函数,如果存在实数mn使得h (x) = m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的一个函数.

f (x)=x2+axg(x)=x+b(R),= 2x2+3x-1,h (x)为f (x)、g(x)在R上生成的一个二次函数.

(1)设,若h (x)为偶函数,求

(2)设,若h (x)同时也是g(x)、l(x) 在R上生成的一个函数,求a+b的最小值;

 

查看答案和解析>>

同步练习册答案