精英家教网 > 高中数学 > 题目详情
使log(a2-3)
1
2
>log(a2-3)
1
3
成立的a的取值范围是(  )
分析:当a2-3>1时,由对数函数的单调性和特殊点求得不等式的解集;当 1>a2-3>0时,同理求得不等式的解集,最后将这两个解集取并集,即为所求.
解答:解:当a2-3>1时,由于y=
log
x
a2-3
 是定义域内的增函数,
1
2
1
3
,∴log(a2-3)
1
2
>log(a2-3)
1
3
 恒成立,
故不等式的解集为{a|a2-3>1}={a|a>2 或a<-2}.
当 1>a2-3>0时,由于y=
log
x
a2-3
是定义域内的减函数,
1
2
1
3
,∴log(a2-3)
1
2
<log(a2-3)
1
3
,故不等式不可能成立,
此时,不等式的解集为∅.
综上,不等式的解集为 {a|a>2 或a<-2},即 (-∞,-2)∪(2,+∞).
故选:B.
点评:本题主要考查对数函数的单调性和特殊点,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知an=log(n+2)(n+3),我们把使乘积a1•a2•a3•…•an为整数的数n称为“优数”,则在区间(0,2012)内所有优数的个数为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

使log(a2-3)
1
2
>log(a2-3)
1
3
成立的a的取值范围是(  )
A.(-2,2)B.(-∞,-2)∪(2,+∞)C.(-2,-
3
)∪(
3
,2)
D.(-∞,-
3
)∪(
3
,+∞)

查看答案和解析>>

同步练习册答案