精英家教网 > 高中数学 > 题目详情

如图所示,已知椭圆x2+8y2=8,在椭圆上求一点P,使P到直线l:x-y+4=0的距离最小,并求出最小值.

答案:
解析:

本题的基本思路有两个:其一是利用直线与椭圆的位置关系求解,先求出切线,再求切线与所给直线间的距离.其二是利用参数表示椭圆上的点P,利用点到直线的距离公式求出距离的表达式后求最小值.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的3倍且经过点M(3,1).平行于OM的直线l在y轴上的截距为m(m≠0),且交椭圆于A,B两不同点.
(1)求椭圆的方程;
(2)求m的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知椭圆M:
y2
a2
+
x2
b2
=1
(a>b>0)的四个顶点构成边长为5的菱形,原点O到直线AB的距离为
12
5
,其A(0,a),B(-b,0).直线l:x=my+n与椭圆M相交于C,D两点,且以CD为直径的圆过椭圆的右顶点P(其中点C,D与点P不重合).
(1)求椭圆M的方程;
(2)试判断直线l与x轴是否交于定点?若是,求出定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知椭圆ax2+by2=1与直线x+y-1=0交于A、B两点,|AB|=2,线段AB的中点M与椭圆中心连线的斜率是,试求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的3倍且经过点M(3,1).平行于OM的直线ly轴上的截距为m(m≠0),且交椭圆于AB两不同点.

(1)求椭圆的方程;

(2)求m的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的3倍且经过点M(3,1).平行于OM的直线l在y轴上的截距为m(m≠0),且交椭圆于A,B两不同点.
(1)求椭圆的方程;
(2)求m的取值范围;

查看答案和解析>>

同步练习册答案