精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 经过点 ,离心率为 ,左、右焦点分别为
(1)求椭圆的方程;
(2)若直线 与椭圆交于A,B两点,与以 为直径的圆交于C,D两点,求 的值.

【答案】
(1)由题设知
解得
∴椭圆的方程为 =1.
故答案为:.
(2)由题设,以F1F2为直径的圆的方程为x2y2=1,
∴圆心到直线l的距离d ,
∴|CD|=2 .
A(x1,y1),B(x2,y2),
得4x2-4x+8=0.
由根与系数的关系可得x1x2=1,x1x2=-2.
∴|AB|= ,则 .
故答案为:.
【解析】(1)将已知条件中的点及离心率代入,即可求出椭圆的方程。
(2)根据已知条件联立得出方程式后,再根据根与系数的关系即可求出。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:实数x满足 ,其中 ;和命题q:实数x满足 .
(1)若a=1且p∧q为真,求实数x的取值范围;
(2)若-p是-q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:
①“四边相等的四边形是正方形”的否命题;
②“梯形不是平行四边形”的逆否命题;
③“若 ,则 ”的逆命题.
其中真命题是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过 轴上动点 引抛物线 的两条切线 为切点,设切线 的斜率分别为 .

(Ⅰ)求证:
(Ⅱ)求证:直线 恒过定点,并求出此定点坐标;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方体中,O是坐标原点,OA轴,OC轴,轴.EAB中点,F中点,OA=3,OC=4,=3,则F坐标为(

A. (3,2, B. (3,3,

C. (3,,2) D. (3,0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC的面积为3,且满足0≤≤6,设的夹角为θ.

(1)θ的取值范围;

(2)求函数f(θ)=2sin2 (cos θ+sin θ)·(cos θ-sin θ)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC的角ABC所对的边分别为abc,设向量=(ab),=(sin B,sin A), =(b-2,a-2).

(1),求证:ABC为等腰三角形;

(2),边长c=2,∠C,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形,下列结论中不正确的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l:ax+ y﹣1=0与x,y轴的交点分别为A,B,直线l与圆O:x2+y2=1的交点为C,D.给出下列命题:p:a>0,SAOB= ,q:a>0,|AB|<|CD|.则下面命题正确的是(
A.p∧q
B.¬p∧¬q
C.p∧¬q
D.¬p∧q

查看答案和解析>>

同步练习册答案