精英家教网 > 高中数学 > 题目详情
设f(x)是R上的偶函数,对任意x∈R,都有f(x-2)=f(x+2)且当x∈[-2,0]时,f(x)=-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是 

[     ]

A.(1,2)
B.(2,+∞)
C.
D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义域为R的周期函数,且f(x)最小正周期为2,且f(1+x)=f(1-x),当-1≤x≤0时,f(x)=-x.
(1)判定f(x)的奇偶性;
(2)试求出函数f(x)在[-1,2]上的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•嘉定区三模)已知k∈R,a>0且a≠1,b>0且b≠1,函数f(x)=ax+k•bx
(1)如果实数a、b满足a>1,ab=1,试判断函数f(x)的奇偶性,并说明理由;
(2)设a>1>b>0,k≤0,判断函数f(x)在R上的单调性并加以证明;
(3)若a=2,b=
12
,且k>0,问函数f(x)的图象是不是轴对称图形?如果是,求出函数f(x)图象的对称轴;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)+f(n),
(1)求证f(0)=0;
(2)判断f(x)在R上的奇偶性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知k∈R,a>0且a≠1,b>0且b≠1,函数f(x)=ax+k•bx
(1)如果实数a、b满足a>1,ab=1,试判断函数f(x)的奇偶性,并说明理由;
(2)设a>1>b>0,k≤0,判断函数f(x)在R上的单调性并加以证明;
(3)若a=2,数学公式,且k>0,问函数f(x)的图象是不是轴对称图形?如果是,求出函数f(x)图象的对称轴;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年上海市嘉定区高考数学三模试卷(理科)(解析版) 题型:解答题

已知k∈R,a>0且a≠1,b>0且b≠1,函数f(x)=ax+k•bx
(1)如果实数a、b满足a>1,ab=1,试判断函数f(x)的奇偶性,并说明理由;
(2)设a>1>b>0,k≤0,判断函数f(x)在R上的单调性并加以证明;
(3)若a=2,,且k>0,问函数f(x)的图象是不是轴对称图形?如果是,求出函数f(x)图象的对称轴;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案