如图,在四棱锥E-ABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC=1,AB=2,F为CE的中点,求证:
(Ⅰ)AE∥平面BDF;
(Ⅱ)平面BDF⊥平面ACE;
(Ⅲ)求四棱锥E-ABCD的体积.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| GP |
| GF |
| π |
| 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三第一次月考理科数学试卷(解析版) 题型:解答题
如图,在四棱锥E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=1200.
(I)求证:平面ADE⊥平面ABE ;
(II)求二面角A—EB—D的大小的余弦值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com