【题目】在△ABC中,角A、B、C的对边分别为a、b、c,a2=b2+c2+bc. (Ⅰ)求角A的大小;
(Ⅱ)若a=2
,b=2,求c的值.
科目:高中数学 来源: 题型:
【题目】已知函数
,把函数f(x)的图象向右平移
个单位得函数g(x)的图象,则下面结论正确的是( )
A.函数g(x)是奇函数
B.函数g(x)在区间[π,2π]上是增函数
C.函数g(x)的最小正周期是4π
D.函数g(x)的图象关于直线x=π对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
(a,b∈R)在点 (2,f(2)) 处切线的斜率为﹣
﹣ln 2,且函数过点(4,
). (Ⅰ)求a、b 的值及函数 f (x)的单调区间;
(Ⅱ)若g(x)=
(k∈N*),对任意的实数x0>1,都存在实数x1 , x2满足0<x1<x2<x0 , 使得f(x0)=f(x1)=f(x2),求k 的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=x2+ex﹣
(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是( )
A.(﹣
)
B.(
)
C.(
)
D.(
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的参数方程为
(α为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程,并说明其表示什么轨迹.
(2)若直线的极坐标方程为sinθ﹣cosθ=
,求直线被曲线C截得的弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx+ax2 , g(x)=
+x+b,且直线y=﹣
是函数f(x)的一条切线. (Ⅰ)求a的值;
(Ⅱ)对任意的x1∈[1,
],都存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设公差不为0的等差数列{an}的前n项和为Sn , 若a2 , a5 , a11成等比数列,且a11=2(Sm﹣Sn)(m>n>0,m,n∈N*),则m+n的值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com