数列{an}的前n项和Sn=
n2-2n(n∈N*),数列{bn}满足bn=
(n∈N*).
(1)判断数列{an}是否为等差数列,并证明你的结论;
(2)求数列{bn}中值最大的项和值最小的项.
|
解 (1)∵Sn= 当n≥2时,an=Sn-Sn-1= ∵a1=- ∵an+1-an=n+1- ∴{an}是以- (2)解法一 ∵an=n- ∵函数f(x)=1+ ∴1>b1>b2,b3>b4>b5>…>1. ∴{bn}中,值最大的项是b3=3,值最小的项是b2=-1. (2)解法二 ∵bn=1+ bn+1-bn=1+
∴b2<b1<1. 当n≥3,且n∈N时,bn+1<bn,且bn>1. 又b3=3,∴{bn}中,值最大的项为b3=3,值最小的项为b2=-1. |
科目:高中数学 来源: 题型:
| Tn |
| ak |
| SnTn |
| Tn(1)+Tn(2)+…+Tn(n) |
| a12 |
| 2-q-q-1 |
| q-qn+1+1-q1-n |
| 1-q |
| a12 |
| 2-q-q-1 |
| q-qn+1+1-q1-n |
| 1-q |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 |
| pn-q |
| p |
| (p-1)(p-q) |
| 1 |
| pn |
| 1 |
| (2n-1)(2n+1-1) |
| 2 |
| 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| ||
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 4 |
| 3 |
| 4 |
| 1 |
| 5 |
| 2 |
| 5 |
| 3 |
| 5 |
| 4 |
| 5 |
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
| 3 |
| 8 |
| n2+n |
| 4 |
| 5 |
| 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com