【题目】2015男篮亚锦赛决赛阶段,中国男篮以9连胜的不败战绩赢得28届亚锦赛冠军,同时拿到亚洲唯一1张直通里约奥运会的入场券.赛后,中国男篮主力易建联荣膺本届亚锦赛
(最有价值球员),下表是易建联在这9场比赛中投篮的统计数据.
![]()
注:(1)表中
表示出手
次命中
次;
(2)
(真实得分率)是衡量球员进攻的效率,其计算公式为:
![]()
(1)从上述9场比赛中随机选择一场,求易建联在该场比赛中
超过
的概率;
(2)我们把比分分差不超过15分的比赛称为“胶着比赛”.为了考察易建联在“胶着比赛”中的发挥情况,从“胶着比赛”中随机选择两场,求易建联在这两场比赛中
至少有一场超过
的概率;
(3)用
来表示易建联某场的得分,用
来表示中国队该场的总分,画出散点图如图所示,请根据散点图判断
与
之间是否具有线性相关关系?结合实际简单说明理由.
![]()
【答案】(1)
;(2)
;(3)不具有线性相关关系.
【解析】试题分析:(1)由已知,结合古典概型计算公式可得:易建联在该场比赛中
超过
的概率;(2)由已知,结合古典概型计算公式可得: 易建联在该场比赛中
超过
的概率;(3)根据散点图,并不是分布在某一条直线的周围,可得结论.
试题解析:(1)设易建联在比赛中
超过
为事件
,则共有8场比赛中
超过
,故
,
(2)设“易建联在这两场比赛中
至少有一场超过
”为事件
,则从上述9场比赛中随机选择两场共有
个基本事件,而从中任意选择两场中,两场
都不超过
的有
个基本事件,那么两场至少有一场超过
的基本事件为
个基本事件.
.
(3)不具有线性相关关系.因为散点图并不是分布在某一条直线的周围.篮球是集体运动,个人无法完全主宰一场比赛.
科目:高中数学 来源: 题型:
【题目】选修4
4:坐标系与参数方程
在直角坐标系
中,已知直线l1:
(
,
),抛物线C:
(t为参数).以原点
为极点,
轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求直线l1 和抛物线C的极坐标方程;
(Ⅱ)若直线l1 和抛物线C相交于点A(异于原点O),过原点作与l1垂直的直线l2,l2和抛物线C相交于点B(异于原点O),求△OAB的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知平面直角坐标系
,以
为极点,
轴的非负半轴为极轴建立极坐标系,
点的极坐标为
,曲线
的参数方程为
(
为参数).
(1)写出点
的直角坐标及曲线
的直角坐标方程;
(2)若
为曲线
上的动点,求
的中点
到直线
:
的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各组函数f(x)与g(x)的图象相同的是( )
A.f(x)=x,g(x)=(
)2
B.f(x)=x2 , g(x)=(x+1)2
C.f(x)=1,g(x)=x0
D.f(x)=|x|,g(x)= ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解消费者购物情况,某购物中心在电脑小票中随机抽取
张进行统计,将结果分成6组,分别是:
,
,制成如下所示的频率分布直方图(假设消费金额均在
元的区间内).
(1)若在消费金额为
元区间内按分层抽样抽取6张电脑小票,再从中任选2张,求这2张小票来自
元和
元区间(两区间都有)的概率;
(2)为做好春节期间的商场促销活动,商场设计了两种不同的促销方案.
![]()
方案一:全场商品打八五折.
方案二:全场购物满100元减20元,满300元减80元,满500元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析:哪种方案优惠力度更大,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com