【题目】函数
对任意的
满足:
,当
时,![]()
(1)求出函数在R上零点;
(2)求满足不等式
的实数
的范围.
【答案】(1)
;(2)
.
【解析】
(1)根据奇偶函数的定义、函数的周期定义,结合已知可以判断出该函数的奇偶性和周期,可以判断出
时,
的零点情况,最后利用函数的奇偶性和周期求出函数在R上零点;
(2)先判断出当
时,函数的单调性,再利用函数的奇偶性,可以化简不等式,最后求出实数
的范围.
(1)因为
,所以函数
是周期为2的奇函数.
因为
,所以当
时,函数没有零点,根据奇函数的对称性可知:当
,函数没有零点,而
,令
,有
,而由奇函数的性质可知:
,所以有
,因此当
时,函数有三个零点,又因为函数的周期是2,所以函数的零点为:
,即
;
(2)设
,因此
.
,
因为
,所以
,因此
,故函数
在
时是增函数.
因为函数
是奇函数,所以![]()
因为
,所以
,
,因此当
时,根据单调性可知:
![]()
.
科目:高中数学 来源: 题型:
【题目】已知圆
与抛物线
有一条斜率为1的公共切线
.
![]()
(1)求
.
(2)设
与抛物线切于点
,作点
关于
轴的对称点
,在区域
内过
作两条关于直线
对称的抛物线的弦
,
.连接
.
①求证:
;
②设
面积为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若曲线
在点
处的切线方程为
,求
的值;
(2)若
的导函数
存在两个不相等的零点,求实数
的取值范围;
(3)当
时,是否存在整数
,使得关于
的不等式
恒成立?若存在,求出
的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某景区欲建两条圆形观景步道
(宽度忽略不计),如图所示,已知
,
(单位:米),要求圆M与
分别相切于点B,D,圆
与
分别相切于点C,D.
![]()
(1)若
,求圆
的半径;(结果精确到0.1米)
(2)若观景步道
的造价分别为每米0.8千元与每米0.9千元,则当
多大时,总造价最低?最低总造价是多少?(结果分别精确到0.1°和0.1千元)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
经过点
,其左焦点为
.过
点的直线
交椭圆于
、
两点,交
轴的正半轴于点
.
![]()
(1)求椭圆
的方程;
(2)过点
且与
垂直的直线交椭圆于
、
两点,若四边形
的面积为
,求直线
的方程;
(3)设
,
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地拟建造一座体育馆,其设计方案侧面的外轮廓线如图所示:曲线
是以点
为圆心的圆的一部分,其中![]()
,
是圆的切线,且
,曲线
是抛物线![]()
的一部分,
,且
恰好等于圆
的半径.
![]()
(1)若
米,
米,求
与
的值;
(2)若体育馆侧面的最大宽度
不超过75米,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,且点
在椭圆C上.
(1)求椭圆C的标准方程;
(2)过椭圆
上异于其顶点的任意一点Q作圆
的两条切线,切点分别为
不在坐标轴上),若直线
在x轴,y轴上的截距分别为
,证明:
为定值;
(3)若
是椭圆
上不同两点,
轴,圆E过
,且椭圆
上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆
是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
为两非零有理数列(即对任意的
,
,
均为有理数),
为一个无理数列(即对任意的
,
为无理数).
(1)已知
,并且
对任意的
恒成立,试求
的通项公式;
(2)若
为有理数列,试证明:对任意的
,
恒成立的充要条件为
;
(3)已知
,
,试计算
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com