精英家教网 > 高中数学 > 题目详情
用0,1,2,3,4,5这六个数字组成无重复数字的正整数.
(1)共有多少个四位数?其中偶数有多少个?
(2)比4301大的四位数有多少个?
(3)能被3整除的四位数有多少个?
注:以上结果均用数字作答.
分析:(1)先安排首位的数字,从五个非0数字中选一个,共有C51种结果,余下的五个数字在三个位置进行全排列,共有A53种结果,根据乘法原理得到结果.用0,1,2,3,4,5六个数字组成没有重复数字的四位偶数,则0不能排在首位,末位必须为0,2,4其中之一.属于有限制的排列问题,且限制有两个,即首位和末位,所以,先分两类.第一类,末位排0.第二类,末位不排0,分别求出排法,再相加即可.
(2)当首位是5时,其他几个数字在三个位置上排列,当首位是4时,第二位是5.后两位没有限制,当前两位是43时,分别写出结果数(注意减去4301),相加得到结果.
(3)被3整除的数字要求数字之和能被3整除,0,3一组,1,5一组,2,4一组,1,2一组,45一组.包括两种情况,一是包含0,3的,需要先从余下的非0数字中选一个做首位,剩下的三个数字任意放,二是不含0,3的,随便排,根据加法原理得到结果.
解答:解:(1)由题意知,因为数字中有0,0不能放在首位,
∴先安排首位的数字,从五个非0数字中选一个,共有C51种结果,
余下的五个数字在三个位置进行全排列,共有A53种结果,
根据分步计数原理知共有A15•A35=300;
用0,1,2,3,4,5六个数字组成没有重复数字的四位偶数,则0不能排在首位,末位必须为0,2,4其中之一.
所以可分两类,末位为0,则其它位没限制,从剩下的5个数中任取3个,再进行排列即可,共有A53=60个
第二类,末位不排0,又需分步,第一步,从2或4中选一个来排末位,有C21=2种选法,第二步排首位,首位不能排0,从剩下的4个数中选1个,有4种选法,第三步,排2,3位,没有限制,从剩下的4个数中任取2个,再进行排列即可,共有12种.
把三步相乘,共有2×4×12=96个
最后,两类相加,共有60+96=156个
(2)当首位是5时,其他几个数字在三个位置上排列,共有A53=60,
当前两位是45时,共有
A
2
4
=4×3=12个,
当前两位是43时,共有
A
2
4
=4×3=12个,去掉4301即可,即有12-1=11个.
根据分类加法原理得到共有:60+12+12-1=83个.
(3)0,3一组,1,5一组,2,4一组,1,2一组,45一组;
被3整除的数字包括两种情况,
一是包含0,3的,需要先从余下的非0数字中选一个做首位.
剩下的三个数字选一个放在第二位,共有4A31A33=72种结果,
二是不含0,3的,共有A44=24种结果,
根据分类计数原理知共有72+24=96.
点评:本题是考查排列组合问题,是一个综合题,包括数字问题中可能遇到的所有情况,同学们注意分析问题,加以比较,争取做到举一反三.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、用0、1、2、3、4、5这六个数字组成无重复数字的六位数,其中个位数字小于十位数字的六位数的个数是多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:

用0、1、2、3、4、5这6个数字,可以组成无重复数字的五位偶数的个数为
312
312
(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

用0,1,2,3,4,5这六个数字,组成四位数.
( I)可以组成多少没有重复数字的四位数?
( II)可组成多少个恰有两个相同数字的四位数?

查看答案和解析>>

科目:高中数学 来源: 题型:

用0、1、2、3、4、5这六个数字,组成没有重复数字的六位数.
(1)这样的六位奇数有多少个?
(2)数字5不在个位的六位数共有多少个?
(3)数字1和2不相邻,这样的六位数共有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:

用0,1,2,3,4这五个数字组成没有重复数字的五位数中,奇数的个数是(  )
A、24B、36C、48D、72

查看答案和解析>>

同步练习册答案